Prompting Matters: Assessing the Effect of
Prompting Techniques on LLM-Generated Class
Code

Adam Yuen, John Pangas, Md Mainul Hasan Polash, Ahmad Abdellatif
University of Calgary
Calgary, Canada
{adam.yuen, john.pangas, mdmainulhasan.polash, ahmad.abdellatif} @ucalgary.ca

I. ABSTRACT

The field of software engineering and coding has undergone
a significant transformation. The integration of large language
models (LLMs), such as ChatGPT, into software development
workflows is changing how developers at all skill levels
approach coding tasks. Leveraging the capabilities of LLMs,
developers can now implement functionalities, fix bugs, and
address reviewers’ comments more efficiently. However, prior
research shows that the effectiveness of LLM-generated code
is heavily influenced by the prompting strategy used. Further-
more, generating code at the class level is significantly more
complex than at the method level, as it requires maintaining
consistency across multiple methods and managing class state.
Therefore, this study evaluates the impact of four prompting
strategies (i.e., Zero-Shot, Few-Shot, Chain-of-Thought, and
Chain-of-Thought-Few-Shot) on GPT and Llama3 in gener-
ating class-level code. It assesses the functional correctness
and the quality characteristics of the generated code. To
better understand how errors differ by prompting strategy, a
qualitative analysis of the generated code is conducted for test
cases that fail. The findings show that strategies incorporating
more contextual guidance (Few-Shot, Chain-of-Thought, and
Chain-of-Thought Few-Shot) outperform Zero-Shot prompting
by up to 25% in functional correctness, 31% in BLEU-3 score,
and 50% in ROUGE-L, while also producing code that is more
readable and maintainable. The results also indicate that pro-
cedural logic and control flow errors are the most prominent,
accounting for 31% of all errors. This study provides valuable
insights to guide future research in developing techniques and
tools that enhance the quality and reliability of LLM-generated
code for complex software development tasks.

II. INTRODUCTION

Large Language Models (LLMs) are rapidly transforming
the software development landscape, where tools such as
OpenAI’s ChatGPT, GitHub Copilot, and Claude Al are often
leveraged by developers to ease their coding workflows [1],
[2]. It has become increasingly common for these tools to be
used to generate code as their ability to reason continues to
increase alongside their popularity. As these models are used
increasingly by software engineers, questions surrounding the
quality, correctness, and reliability of LLM-generated code

have grown in importance. Recent work demonstrates that
the performance of LLMs, particularly in code generation, is
heavily dependent on prompting [3]. Moreover, recent work in
this space has primarily focuses on the functional correctness
of generated code, often using function-level prompts to evalu-
ate whether LLMs can accurately implement isolated methods
[4]-[7]. However, generating class-level code is more complex,
as it requires the model to reason about inter-method depen-
dencies, maintain a coherent state through instance variables,
and correctly implement object-oriented design principles such
as encapsulation and inheritance [8].

Therefore, this paper presents the first attempt to evaluate
the impact of prompting strategies on LLM-generated code
at the class-level, as well as which prompting strategy is
optimal for code generation. To do so, we leverage the
ClassEval class-level code generation benchmark [9] to assess
the impact of four prompting strategies (Zero-Shot, Few-Shot,
Chain-of-Thought, and Chain-of-Thought-Few-Shot) on GPT-
40 and Llama3-70B in class-level code generation. Our work
investigates the following research questions (RQs):

RQ1: How do different prompt strategies impact GPT’s
performance in generating class-level code? Our study
finds that Few-Shot, Chain-of-Thought, Chain-of-Thought-
Few-Shot prompt strategies perform the best, achieving 82.1%,
84.8%, and 83.7% pass rates, respectively.

RQ2: How do different prompt strategies affect the qual-
ity characteristics of LLM-generated code? The results
demonstrate that these prompts generate higher-quality code,
exhibiting improved complexity, nesting, and documentation
compared to an equivalent, human-authored baseline while still
maintaining similarity, supported by NLP metrics. Our results
also demonstrate that LLM-generated code tends to be less
verbose, with 5-10 fewer median number of code lines when
compared to a human-generated baseline.

RQ3: What types of errors occur in LLM-generated code
under different prompt strategies? From the analysis of
the errors in RQI1, it is observed that Chain-of-Thought-
based prompts perform the best in terms of reducing several
error types, such as structure and logic based failures, further
supporting that additional context improves the generated code
output. For instance, across all categories of failures, we
observe Zero-Shot prompting results in 3 times the overall

errors versus other prompt strategies, at 536 total failures
versus 180 in all other strategies.

III. EXPERIMENT DESIGN

The main goal of our study is to assess the impact of different
prompting strategies on LLM-generated code. In this section,
we describe the dataset and the process of constructing the
prompting strategies.

A. Dataset

To the best of our knowledge, there are no existing datasets
specifically designed with prompts for generating class-level
code. To construct a dataset containing such prompts along
with their corresponding code, we leverage ClassEval dataset
proposed by Yu et al. [9] that has been used by prior SE
work [10], [11]. ClassEval contains 100 classes that present a
variety of object-oriented programming challenges, such as a
Blackjack game and a utility for determining the longest word
in a sentence. ClassEval is a manually curated benchmark
developed to evaluate LLMs on more complex class-level
Python coding tasks; unlike prior datasets, which primarily
focus on method-level problems. Furthermore, ClassEval pro-
vides test cases for each instance, enabling robust evaluation
of functional correctness by comparing LLM-generated im-
plementations to the expected outputs. These features make it
well-suited for our study. In the following section, we describe
the prompting strategies used in this study and outline the steps
taken to construct the prompts.

B. Prompt Strategies

We study four prompting strategies: Zero-Shot, Few-Shot,
Chain-of-Thought, and Chain-of-Thought-Few-Shot. These
strategies have been used in a variety of SE work [12]-[16].

e Zero-shot prompting provides only a task instruction
without examples, relying on the model’s pre-trained
knowledge. Our Zero-Shot prompt includes a class-level
docstring and a structural skeleton outlining method
names and headers. We adapt ClassEval’s class skeletons
[12], [14] by removing parameter descriptions, example
inputs/outputs, and implementation hints to adhere to
zero-shot format.

o Few-shot prompting builds off of zero shot by adding
example input and output to guide the model. We rein-
corporate removed elements from the class skeleton (e.g.,
parameter descriptions, example I/O) and append a sepa-
rate ClassEval prompt and its canonical solution [9]. This
enriches context and provides the LLM with a reference
solution to a similar task.

o Chain-of-Thought (CoT) prompting introduces inter-
mediate reasoning steps to guide step-by-step generation
[17]. To construct CoT prompts for all classes, two
authors independently write prompts for each of the
100 coding problems in ClassEval. Next, the annotators
validate all of the prompts together, scrutinizing each
one and merging them. In case of disagreement, a third
author engaged in the discussion to reach an agreement.

Each prompt begins with a task overview and is followed
by instructions breaking down how to implement each
method.

o Chain-of-Thought Few-shot (CoT Few-Shot) prompt-
ing combines the benefits of CoT and Few-Shot prompt-
ing [14]. Each prompt includes a CoT-style explanation
for the target task, along with a full CoT prompt and
solution for a different ClassEval problem. This strategy
aims to improve reasoning and structure by offering an
in-context worked example. As one prompt is reserved as
the example, Few-Shot and CoT Few-Shot strategies run
on 99 tasks instead of 100.

Our study evaluates 396 prompts, with 100 of both Zero-
Shot and CoT, and 99 of both Few-Shot and CoT Few-Shot.
We remove the held out class used as an example in CoT Few-
Shot and Few-Shot from both Zero-Shot and CoT from Zero-
Shot and CoT. Thus, the final dataset contains 396 prompts
(99 prompts for each strategy), which are available at [18].
After constructing the prompts, we evaluate the code generated
for each one by utilizing a Python pipeline that automates
the process of gathering prompts and submitting them to the
LLMs. Specifically, the pipeline iterates through each prompt
in our dataset and sends it to the LLMs sequentially. GPT-40
and Llama3 are configured with a temperature of 0.5 to strike
a balance between deterministic behavior and what a typical
user would see, a token limit of 1000 (2000 for Llama3 due
to API differences), and a single completion per prompt. The
outputs are collected in a large CSV file for analysis to answer
our RQs.

IV. RESULTS

In this section, we present the results of our study. We
describe our motivation, methodology to answer the questions,
and results for each research question.

A. RQI: How do different prompt strategies impact GPT’s
performance in generating class-level code?

Motivation: Understanding the correctness of LLM-generated
code is fundamental to evaluating the reliability and utility
of LLMs in programming contexts. This RQ examines code
correctness by assessing how accurately the generated code
aligns with functional requirements. The results will guide
practitioners in selecting the appropriate prompt for class
implementation.

Approach: To determine the correctness of the LLM-
generated code, our study leverages the test suite from Clas-
sEval. We reiterate that each coding problem outlined in the
ClassEval dataset contains a series of test cases; every LLM-
generated code snippet is tested against its appropriate test
class. We run the corresponding test cases against the LLM-
generated class. We report the mean pass rate across all test
cases for all classes for each prompting strategy.

Results: Table I presents GPT’s performance for each prompt-
ing strategy in terms of test pass rate. Overall, CoT achieved
the highest functional correctness with an average pass rate
of 84.%5 to 84.8%, followed closely by CoT Few-Shot at

TABLE I: Pass Rates and Correct Generated Class Counts by
Prompting Strategy for GPT and Llama3.

Strategy Pass Rate (%) Correct Classes (out of 99)

GPT-40 Llama3 | GPT-40 Llama3
Zero-Shot 57.8 59.8 21 19
Few-Shot 82.1 78.8 38 31
CoT 84.8 84.5 38 37
CoT Few-Shot 83.7 81.9 40 38

81.9% - 83.7% and Few-Shot at 82.1%. These results suggest
that structured prompting strategies that encourage step-by-
step reasoning, whether with or without examples, can signifi-
cantly enhance the LLM’s ability to generate code that passes
behavioral tests. On the other hand, Khojah et al. [7] report
that using a few-shot prompting strategy achieved the best
results for class-level code generation with GPT-40 on their
dataset. This difference might be due to the fact that generating
class-level code is more complex than generating method-level
code.

Zero-Shot prompting resulted in a substantially lower pass
rate of 57.8%- 59.8%, as shown in Table I. Compared to Zero-
Shot, the three prompting strategies with pass rates in the 80%
range incorporate additional information such as intermediate
reasoning steps and/or example-driven context, indicating a
limited ability of LLMs to generate functionally correct code
without contextual guidance or demonstration. These trends
support the hypothesis that more informative prompts lead to
better generalization and correctness in LLM-generated code.

B. RQ2: How do different prompt strategies affect the quality
characteristics of LLM-generated code?

Motivation: While functional correctness is essential for code
reliability, software engineers must also consider code quality
characteristics such as complexity and maintainability. These
characteristics affect how easily code can be reviewed, de-
bugged, and extended, all critical factors in software develop-
ment. Thus, beyond evaluating whether generated code works,
it is crucial to investigate its alignment with best practices
in software engineering. In this RQ, we explore the LLM-
generated code characteristics for each prompting strategies.
Approach: To assess the LLM-generated code’s quality, we
leverage SciTools’ Understand tool to analyze both the func-
tionally correct and incorrect code snippets generated during
RQI. Specifically, we compute size in terms of lines of code,
complexity in terms of the maximum cyclomatic complexity
for a class, and readability based on the number of comments.
To put our results into perspective, we compute the code
quality characteristics of the canonical solution set (oracle)
from ClassEval. Furthermore, we compute BLEU3 score and
ROUGE-L F1 score [19], [20] of the generated code with the
expected solution to quantify how closely the LLM-generated
code resembles the oracle.

Results: Table IIT presents the median values of code char-
acteristics for correct and incorrect LLM-generated code.
Overall, the LLM-generated code, regardless of its functional
correctness, exhibits complexity levels comparable to human-
generated code, with a median complexity of 3 observed in

TABLE II: Results for NLP Metrics (BLEU-3, ROUGE-L) by
Prompting Strategy and Model

Strategy BLEU-3 (%) ROUGE-L (%)

GPT Llama3 | GPT Llama3
Zero-Shot 8.9 9.6 32.7 454
Few-Shot 10.3 8.3 31.0 439
CoT 37.9 26.0 | 73.1 61.3
CoT Few-Shot | 39.3 29.0 72.6 65.9

both correct code snippets and the oracle We also observe
that functionally correct code snippets contain fewer lines of
code and fewer comments compared to both incorrect LLM-
generated code and the oracle. We report that the oracle
contained a median of 5 lines of comments per class, a
mere 14% of what Few-Shot can generate. Additionally, on
average, correct code contains 25% fewer lines and 12%
fewer comments than incorrect LLM-generated code, with
the oracle reporting a median of 33 code lines. Interestingly,
both the CoT and CoT Few-Shot prompting strategies result
in zero code comments, regardless of whether the generated
code is correct or incorrect. One potential reason behind this
observation is that these prompting strategies focus heavily
on guiding the model’s reasoning process through natural
language rather than encouraging documentation within the
code itself, which may inadvertently deprioritize in-line com-
menting during generation. On the other hand, LLMs tend to
include more code comments when using Zero-Shot and Few-
Shot prompting strategies, likely in an effort to clarify the code
as it is being generated.

Table II presents the similarity between LLM-generated
code and the oracle (human-written code) for each prompt
strategy. From the table, we observe that the code generated
using the CoT and CoT Few-Shot strategies is most similar
to human-generated code in terms of BLEU-3 and ROUGE-L
scores, compared to Zero-Shot and Few-Shot strategies. This
might be due to the fact that CoT prompting encourages the
model to reason through the problem step-by-step, leading to
more structured and coherent code generation that better aligns
with human coding practices.

Based on our results, we recommend that practitioners use
the CoT and CoT Few-Shot strategies for generating class-
level code when the goal is to produce code that closely
resembles existing project code, as these strategies yield higher
BLEU-3 and ROUGE-L scores. However, if their objective is
to obtain alternative implementations with more extensive code
documentation, the Few-Shot strategy may be more suitable.

C. RQ3: What types of errors occur in LLM-generated code
under different prompt strategies?

Motivation: After understanding the quantitative metrics for
the LLM-generated code, we want to analyze the nature of
the code’s errors. Thus, in this RQ, we analyze the types of
errors and how they vary by prompting strategy. This analysis
offers insights into the specific challenges LLMs face in code
generation and helps identify which prompting strategies are
more prone to particular types of mistakes, ultimately guiding
the design of more effective prompts.

TABLE III: Comparison of Code Quality Metrics by Prompting Strategy and Model

| GPT-40 I Llama3
Category | Correct Code | Incorrect Code I Correct Code | Incorrect Code

| Cyclo. Code Comm. | Cyclo. Code Comm. || Cyclo. Code Comm. | Cyclo. Code Comm.
Zero-Shot 3 20.5 22 3 30 27 3 25 18 3 32 15
Few-Shot 3 23 33.5 3 30 35 3 26 29 3 32.5 38
CoT 2 25.5 0 3 31 0 3.5 28 0 3 28 0
CoT + Few-Shot 3 23.5 0 3 31 0 3 27 0 3 36 0

Approach: To conduct our qualitative analysis, we examine
the test outputs produced in RQ1 to classify the functional
failures in LLM-generated code. We randomly sampled failed
test cases from the GPT-40 model with a 95% confidence level
and a 5% confidence interval from each prompting strategy,
resulting in a sample size of 1095. One author performed
open coding by manually inspecting the test outputs and the
corresponding LLM-generated code. The root cause of each
failure was identified and categorized based on distinct types
of recurring errors observed in the generated code.

Results: Table IV presents 16 error types, grouped into six
main categories. The table also shows the distribution of each
error across the four prompting strategies. Our study reveals a
more specific set of error categories related to class-level code
generation, such as Missing Methods. Below, we describe the
six categories along with their associated error types.

Type and Structure Errors: This category encompasses
errors such as Incorrect Data Types, where generated code
deviates from the expected formats (e.g., producing an integer
instead of a string); Improper Use of Collections, where unsuit-
able data structures are used; and Mismatched Return Types,
where return types are unexpected - for instance, returning
None instead of a boolean. Type and Structure errors were
most prevalent under Zero-Shot prompting (84 instances) and
were notably mitigated in other strategies.

Logic and Control Flow Errors: This category includes
Incorrect Procedural Logic errors which occurred due to
flawed implementation steps, such as dividing by n instead
of n—1; Faulty Conditional Branching errors, which involved
incomplete or invalid condition expressions, and Inadequate
Loop Control errors where loop termination conditions were
missing or incorrect, resulting in infinite or prematurely ter-
minated loops. Logic and Control Flow Errors were prevalent
across all prompting strategies, with the majority stemming
from Incorrect Procedural Logic, accounting for 14% to 34%
of total errors per strategy.

Method and Attribute Errors: Outlines errors due to Miss-
ing Methods, Incorrect Method Signatures, where functions
had wrong parameter configurations; and Incorrect Attribute
Naming, which involved misnaming variables or object prop-
erties, such as using conn instead of the correct identifier
connection. Zero-Shot prompting showed a particularly high
incidence of Incorrect Attribute Naming errors (93 instances),
far exceeding those seen in other prompting approaches.

Input Handling Errors: This category included Parsing
Errors, such as failures in processing date or string formats,
Insufficient Input Validation, where checks for null or invalid

inputs were absent, and Incorrect Input Assumptions, where
the model assumed the presence of inputs (such as specific dic-
tionary keys) without verification. These errors were especially
common in Zero-Shot (74 instances) and were significantly
reduced with few-shot prompting.

Output Formatting and Content Errors: Errors in this cat-
egory include Improper Output Formatting, such as returning
a tuple instead of a string, and Incorrect Output Content,
where output structures are valid but are semantically flawed
or incomplete. These errors persisted across all strategies, with
most recording 40 or more instances each.

Dependency and External Library Errors: This
involved Missing Imports, where required external
libraries were used but not declared, and Incorrect Library
Usage, such as using tdatetime.now() instead of
datetime.datetime.now (). Zero-Shot prompting
accounted for a disproportionate number of these errors (72
instances), while other strategies showed significantly fewer
occurrences (5 or fewer).

Following this, the authors analyzed 60% of the failed
test case classes from the Llama3 model to assess how well
our taxonomy of failure types generalizes beyond the GPT-
generated code. We observed similar patterns in the reasons
for failure, and therefore report detailed findings for only 30
of Llama3’s classes. A full analysis of all Llama3-generated
classes is available in our replication package.

Overall, the findings support that prompting strategies that
incorporate reasoning or illustrative examples substantially
improve LLM performance by reducing structural, logical, and
integration-related errors.

V. THREATS TO VALIDITY

To construct the prompts for our study, two authors manu-
ally examined the 100 coding problems from ClassEval, which
might involves subjective design decisions that could influence
the outcome. To alleviate this threat, the annotators inde-
pendently created the prompts and then jointly reviewed and
resolved discrepancies. In cases of disagreement, the prompt
was discussed with a third author to reach an agreement.

We use GPT-40 and Llama3 70B to assess the impact of
different prompting strategies on the LLM-generated code.
Furthermore, we use the ClassEval dataset to conduct our
study. Thus, our results and observations might not be gen-
eralized to other facets of software engineering. Thus, our
results may not generalize to other datasets and LLMs with
different architectures, training data, or capabilities. We plan

TABLE IV: Frequency of Generated Code Failures by Error Type and Prompting Strategy

Main Category \ Error Type \ Zero-Shot Few-Shot Chain-of-Thought Chain-of-Thought-Few-Shot
Incorrect Data Types 24 0 0 10
Type and Structure Errors Improper Use of Collections 44 9 0 10
Mismatched Return Types 16 10 11 3
Incorrect Procedural Logic 77 67 66 67
Logic and Control Flow Errors Faulty Conditional Branching 23 10 14 14
Inadequate Loop Control 1 1 3 0
Incorrect Attribute Naming 93 0 2 8
Method and Attribute Errors Missing Methods 3 1 6 1
Incorrect Method Signatures 19 18 14 0
Parsing Errors 0 1 2 1
Input Handling Errors Insufficient Input Validation 7 1 6 9
Incorrect Input Assumptions 67 8 15 12
. Improper Output Formatting 33 10 14 10
Output Formatting and Content Errors Incorrect Output Content 48 3 3 3
Dependency and External Library Errors }\gézs;rnegc tli%(;;trsy Usage 792 15 0 8 2
Total Failures 536 183 189 187

(and encourage others) in the future to replicate our study
using a wider variety of datasets and LLMs.

VI. RELATED WORK

As LLMs continue to advance, they are being applied to
an increasingly wide range of software engineering tasks,
including code translation [21], code review [22], and unit
test generation [3]. Specifically, code generation has emerged
as a growing area of research, with interest in both how to
evaluate model outputs and how to guide code generation
effectively [6], [23]-[25]. Building on this, prior work has
examined both fine-tuning and prompt engineering strategies.
For example, Wang et al. [26] compared prompt tuning and
fine tuning using CodeBERT and CodeT5 across tasks such
as defect prediction, summarization, and code translation.
Similarly, Shin et al. [27] compared GPT-4 with both prompt-
engineered and fine-tuned models, concluding that fine-tuned
models generally perform better and emphasize the continued
need for human involvement in optimizing prompts.

Other studies have shown that LLMs are sensitive to prompt
variations during code generation [28]. Gao et al. [29] ex-
amined factors affecting in-context learning, such as example
order, selection, and quantity, and found that the similarity
and diversity of examples significantly influence code under-
standing and generation by LLMs. The work closest to ours is
by Khojah et al. [7], which examines function-level prompts
from CoderEval, focusing on similarity, complexity, and code
smells. Du et al. [30] explores holistic, incremental, and
compositional prompting strategies, finding that most models
perform better when generating classes method by method.

To the best of our knowledge, no prior work has evaluated
the impact of four prompting strategies on the performance
of LLMs at the class-level code granularity. Furthermore,
our evaluation assesses the quality characteristics of LLM-
generated code for each prompting strategy and analyzes the
corresponding errors in the generated output. Overall, our work
complements existing studies on code generation by providing
a thorough evaluation of different prompting strategies and

their effects on the quality and characteristics of class-level
code generated by LLMs.

VII. CONCLUSION

In this paper, we present a systematic evaluation of Zero-
Shot, Few-Shot, CoT, and CoT Few-Shot for class-level code
generation using GPT-40 and Llama3 70B. We leverage the
ClassEval benchmark to develop prompts that reflect real-
world SE tasks, and to evaluate the LLM-generated code.
Specifically, we investigate how different prompting strategies
affect functional correctness, code quality characteristics, and
the types of errors produced by these strategies. Our results
show that CoT and CoT Few-Shot consistently achieved the
highest correctness, with pass rates exceeding 81%, while
Zero-Shot lagged significantly at approximately 58% for both
Llama3 and GPT-4o0. Additionally, CoT and CoT Few-Shot
strategies also produced code with the highest similarity to
human-written code, achieving BLEU-3 scores up to 39.3%
and ROUGE-L scores over 61.3%, while maintaining compa-
rable complexity and structure. Furthermore, based on analysis
of all errors, Zero-Shot prompting accounted for 49% of all
the errors among all strategies. Specifically, Logic and Control
Flow errors emerged as the most frequent error type for 31%
of the total errors from all strategies.

Ultimately, our study provides insights into how prompt
design influences model performance on class-level coding
tasks. These results demonstrate the importance of prompt
design in maximizing the capabilities of large language models
for code generation and particularly the addition of context
into prompts. In the future, we plan to expand our study by
including more LLMs and diversifying our dataset to include
a wider variety of inputs and problems, as well as different
programming languages. Furthermore, we plan to explore
how the different prompting strategies extend to tasks like
code modification and refactoring, as well as assessing how
prompting for well-documented code impacts both correctness
and maintainability.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

S. Peng, E. Kalliamvakou, P. Cihon, and M. Demirer, “The impact
of ai on developer productivity: Evidence from github copilot,” 2023.
[Online]. Available: https://arxiv.org/abs/2302.06590

J. Jiang, E. Wang, J. Shen, S. Kim, and S. Kim, “A survey on
large language models for code generation,” 2024. [Online]. Available:
https://arxiv.org/abs/2406.00515

L. Yang, C. Yang, S. Gao, W. Wang, B. Wang, Q. Zhu, X. Chu,
J. Zhou, G. Liang, Q. Wang, and J. Chen, “On the evaluation of large
language models in unit test generation,” 2024. [Online]. Available:
https://arxiv.org/abs/2406.18181

M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri,
G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan,
S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian,
C. Winter, P. Tillet, F. P. Such, D. Cummings, M. Plappert, F. Chantzis,
E. Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak,
J. Tang, 1. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse,
A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford,
M. Knight, M. Brundage, M. Murati, K. Mayer, P. Welinder,
B. McGrew, D. Amodei, S. McCandlish, I. Sutskever, and W. Zaremba,
“Evaluating large language models trained on code,” 2021. [Online].
Available: https://arxiv.org/abs/2107.03374

J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan,
E. Jiang, C. Cai, M. Terry, Q. Le, and C. Sutton, “Program
synthesis with large language models,” 2021. [Online]. Available:
https://arxiv.org/abs/2108.07732

Y. Zhang, W. Zhang, D. Ran, Q. Zhu, C. Dou, D. Hao, T. Xie, and
L. Zhang, “Learning-based widget matching for migrating gui test
cases,” in Proceedings of the IEEE/ACM 46th International Conference
on Software Engineering, ser. ICSE *24. ACM, Feb. 2024, p. 1-13.
[Online]. Available: http://dx.doi.org/10.1145/3597503.3623322

R. Khojah, F. G. de Oliveira Neto, M. Mohamad, and P. Leitner, “The
impact of prompt programming on function-level code generation,”
2024. [Online]. Available: https://arxiv.org/abs/2412.20545

R. Pan, A. R. Ibrahimzada, R. Krishna, D. Sankar, L. P. Wassi,
M. Merler, B. Sobolev, R. Pavuluri, S. Sinha, and R. Jabbarvand, “Lost in
translation: A study of bugs introduced by large language models while
translating code,” in Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, ser. ICSE *24. ACM, Apr. 2024,
p. 1-13. [Online]. Available: http://dx.doi.org/10.1145/3597503.3639226
X. Du, M. Liu, K. Wang, H. Wang, J. Liu, Y. Chen, J. Feng, C. Sha,
X. Peng, and Y. Lou, “Classeval: A manually-crafted benchmark
for evaluating llms on class-level code generation,” 2023. [Online].
Available: https://arxiv.org/abs/2308.01861

X. Hou, Y. Zhao, Y. Liu, Z. Yang, K. Wang, L. Li, X. Luo,
D. Lo, J. Grundy, and H. Wang, “Large language models for
software engineering: A systematic literature review,” ACM Trans.
Softw. Eng. Methodol., vol. 33, no. 8, Dec. 2024. [Online]. Available:
https://doi.org/10.1145/3695988

Z. Zheng, K. Ning, Y. Wang, J. Zhang, D. Zheng, M. Ye,
and J. Chen, “A survey of large language models for code:
Evolution, benchmarking, and future trends,” 2024. [Online]. Available:
https://arxiv.org/abs/2311.10372

J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia,
E. Chi, Q. Le, and D. Zhou, “Chain-of-thought prompting elicits
reasoning in large language models,” 2023. [Online]. Available:
https://arxiv.org/abs/2201.11903

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal,
A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M.
Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford,
I. Sutskever, and D. Amodei, “Language models are few-shot learners,”
2020. [Online]. Available: https://arxiv.org/abs/2005.14165

T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, “Large
language models are zero-shot reasoners,” 2023. [Online]. Available:
https://arxiv.org/abs/2205.11916

D. Zhou, N. Schirli, L. Hou, J. Wei, N. Scales, X. Wang,
D. Schuurmans, C. Cui, O. Bousquet, Q. Le, and E. Chi, “Least-to-
most prompting enables complex reasoning in large language models,”
2023. [Online]. Available: https://arxiv.org/abs/2205.10625

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tay, W. Fedus,
Y. Li, X. Wang, M. Dehghani, S. Brahma, A. Webson, S. S.
Gu, Z. Dai, M. Suzgun, X. Chen, A. Chowdhery, A. Castro-Ros,
M. Pellat, K. Robinson, D. Valter, S. Narang, G. Mishra, A. Yu,
V. Zhao, Y. Huang, A. Dai, H. Yu, S. Petrov, E. H. Chi, J. Dean,
J. Devlin, A. Roberts, D. Zhou, Q. V. Le, and J. Wei, “Scaling
instruction-finetuned language models,” 2022. [Online]. Available:
https://arxiv.org/abs/2210.11416

A. K. Lampinen, I. Dasgupta, S. C. Y. Chan, K. Matthewson, M. H.
Tessler, A. Creswell, J. L. McClelland, J. X. Wang, and F. Hill, “Can
language models learn from explanations in context?” 2022. [Online].
Available: https://arxiv.org/abs/2204.02329

Anonymus, “Github - senoryuen/prompt-quality-study,” 07 2025.
[Online]. Available: https:/github.com/Senor Yuen/Prompt-Quality-
Study

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in Proceedings of the
40th Annual Meeting on Association for Computational Linguistics, ser.
ACL ’02. USA: Association for Computational Linguistics, 2002, p.
311-318. [Online]. Available: https://doi.org/10.3115/1073083.1073135
C.-Y. Lin, “ROUGE: A package for automatic evaluation of summaries,”
in Text Summarization Branches Out. Barcelona, Spain: Association for
Computational Linguistics, Jul. 2004, pp. 74-81. [Online]. Available:
https://aclanthology.org/W04-1013/

R. Pan, A. R. Ibrahimzada, R. Krishna, D. Sankar, L. P. Wassi,
M. Merler, B. Sobolev, R. Pavuluri, S. Sinha, and R. Jabbarvand, “Lost in
translation: A study of bugs introduced by large language models while
translating code,” in Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, ser. ICSE °24. ACM, Apr. 2024,
p. 1-13. [Online]. Available: http://dx.doi.org/10.1145/3597503.3639226
Q. Guo, J. Cao, X. Xie, S. Liu, X. Li, B. Chen, and X. Peng, “Exploring
the potential of chatgpt in automated code refinement: An empirical
study,” 2023. [Online]. Available: https://arxiv.org/abs/2309.08221

J. Liu, C. S. Xia, Y. Wang, and L. Zhang, “Is your code
generated by chatgpt really correct? rigorous evaluation of large
language models for code generation,” 2023. [Online]. Available:
https://arxiv.org/abs/2305.01210

P. T. Nguyen, J. Di Rocco, C. Di Sipio, R. Rubei, D. Di
Ruscio, and M. Di Penta, “Gptsniffer: A codebert-based classifier
to detect source code written by chatgpt,” Journal of Systems
and Software, vol. 214, p. 112059, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121224001043
P. Bareif3, B. Souza, M. d’Amorim, and M. Pradel, “Code Generation
Tools (Almost) for Free? A Study of Few-Shot, Pre-Trained Language
Models on Code,” Jun. 2022, arXiv:2206.01335 [cs]. [Online].
Available: http://arxiv.org/abs/2206.01335

C. Wang, Y. Yang, C. Gao, Y. Peng, H. Zhang, and M. R. Lyu,
“Prompt tuning in code intelligence: An experimental evaluation,” JEEE
Transactions on Software Engineering, 2023.

J. Shin, C. Tang, T. Mohati, M. Nayebi, S. Wang, and H. Hemmati,
“Prompt engineering or fine-tuning: An empirical assessment of 1lms
for code,” 2025. [Online]. Available: https://arxiv.org/abs/2310.10508
X. Gao, A. Sinha, and K. Das, “Learning to search effective
example sequences for in-context learning,” 2025. [Online]. Available:
https://arxiv.org/abs/2503.08030

S. Gao, X.-C. Wen, C. Gao, W. Wang, H. Zhang, and M. R. Lyu,
“What makes good in-context demonstrations for code intelligence
tasks with 1lms?” in 2023 38th IEEE/ACM International Conference on
Automated Software Engineering (ASE). 1EEE, Sep. 2023, p. 761-773.
[Online]. Available: http://dx.doi.org/10.1109/ASE56229.2023.00109
X. Du, M. Liu, K. Wang, H. Wang, J. Liu, Y. Chen, J. Feng, C. Sha,
X. Peng, and Y. Lou, “Evaluating large language models in class-level
code generation,” in Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, ser. ICSE '24. New York, NY,
USA: Association for Computing Machinery, 2024. [Online]. Available:
https://doi.org/10.1145/3597503.3639219

