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Abstract

Chatbots have become prevalent in industries such as health and
pharmaceutical. They make access to streamlined information eas-
ier and faster. With recent advances in large language models
(LLMs), chatbots powered by LLMs offer new opportunities to im-
prove access to information, including information about drugs.
However, developing chatbots in pharmaceutical practice remains
challenging due to safety and regulatory compliance requirements
and the unique nature of the data in this domain. In this paper, we
share our experience deploying an LLM-based chatbot to answer
drug-related questions. We highlight the challenges we encoun-
tered developing the chatbot for a global pharmaceutical company.
Among these challenges are ensuring that our chatbot retrieves
reliable, up-to-date information from trusted sources and that its
responses are trustworthy. We also share the strategies we adopt to
overcome these challenges and the lessons we learn from deploying
the chatbot. We believe these insights can guide the BoatSE and the
broader software engineering community when deploying chatbots
for highly regulated domains like pharmaceuticals.

CCS Concepts

» Applied computing — Computers in other domains; « Soft-
ware and its engineering — Software design engineering.
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1 Introduction

Chatbots are increasingly becoming important tools for organiza-
tions, offering conversational interfaces that automate information
retrieval and other routine interactions [1]. The recent advances in
LLMs have equipped chatbots with cutting-edge capabilities, which
have contributed to the rise in adoption of chatbots in various do-
mains such as customer support [21], financial assistants [7, 23],
programming assistants [22], and in e-commerce [17]. The pharma-
ceutical and medical domains have also seen growth in the interest
of chatbots. For instance, Google’s Med-PaLM 2 was trained to an-
swer medical questions, and it demonstrated superior performance
over other models on healthcare QA benchmarks [24]. Steybe et al.
[25] also introduced GuideGPT, a context aware chatbot for answer-
ing clinical questions on osteonecrosis medications.

These capabilities prove attractive to a global pharmaceutical
company that receives a high volume of inquiries about dosage,
contraindications, or storage of their products from health profes-
sionals (e.g., doctors and pharmacists), patients and the general
public. Responding to such inquiries traditionally demands sig-
nificant human effort, as relevant information is often dispersed
across multiple sources. In this context, a chatbot can help auto-
mate responses, improving efficiency, reducing response times, and
enhancing customer satisfaction.

However, developing a chatbot in the pharmaceutical domain
presents unique challenges. The pharmaceutical domain is highly
regulated, and information disseminated by pharmaceutical compa-
nies (and, by extension, their chatbots) must comply with stringent
regulatory standards. These regulations exist for good reason, as
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inaccurate information about drugs can have serious consequences
for patient health and safety.

As part of our ongoing collaboration with the global pharma-
ceutical company to transform drug-related inquiries with artificial
intelligence (AI), we developed a drug information chatbot. The
chatbot combines data from a pharmaceutical company’s internal
databases and reputable external sources, utilizing Al to analyze
and synthesize this information to deliver accurate, relevant, and
compliant responses in a reduced turnaround time. Our chatbot
answers questions related to drug information, such as “Can I take
drug A while taking drug B?” or “How should I store drug X?”. To
ensure the integrity of the information provided by our chatbot,
we implement several safeguards, including strict external source
selection and a confidence scoring mechanism that provides trans-
parency to users.

In this paper, we share our experience developing an LLM-based

chatbot for a global pharmaceutical company. We believe this will
provide valuable insights to both researchers and practitioners in
the SE community when developing chatbots for highly regulated
domains.
Paper Organization. The remainder of this paper is organized
as follows. Section 2 presents the background, and Section 3 re-
views related work. Section 4 describes the high-level architecture
of our chatbot, while Section 5 discusses the technical and domain-
specific challenges encountered during development and the strate-
gies adopted to address them. In section 6, we share the lessons
learned, and Section 7 concludes the paper.

2 Background

The pharmaceutical industry is highly regulated across the world.
[12]. In the Canadian context, the regulatory authority, Health
Canada (hereafter referred to as the regulator), maintains strict
rules governing the communication of information about drug
products. These requirements extend, by implication, to any chatbot
endorsed by a pharmaceutical company, as it serves as a channel
of communication with users. [4].

One key requirement is that communication about drug products
be consistent with information in the product monograph [4]. The
product monograph is an authoritative, publicly available docu-
ment that provides comprehensive and factual information about
a specific drug product. It is a mandatory component of market
authorization and follows a standardized structure consisting of
three parts:

(1) Health Professional Information, covering indications, con-
traindications, warnings and precautions, adverse reactions,
drug interactions, dosage and administration instructions,
pharmacological properties, and other clinical and safety
data;

(2) Scientific Information, detailing clinical pharmacology, toxi-
cology studies, product composition, and stability; and

(3) Patient Medication Information, providing information on
the product’s uses, correct administration, potential side
effects, and when to seek medical attention.

The product monographs are lengthy documents with the Health
and Professional Information and Scientific Information sections writ-
ten in technical language intended for healthcare professionals and
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may include tables, figures, and specialized terminology to sum-
marize clinical and pharmacological data. By contrast, the Patient
Medication Information section is written in plain language, target-
ing a Grade 6-8 reading level to ensure accessibility for patients
and caregivers.

In addition to these product monographs, the pharmaceutical
company maintains non-public reference materials, such as Fre-
quently Asked Questions (FAQs) and marketing documents, which
contain supplementary information used by correspondents to pro-
vide accurate and consistent responses to inquiries from healthcare
professionals or patients. Together, these materials form the knowl-
edge base for a drug product, and all communication regarding that
product (whether by humans or chatbots) must remain consistent
with the information they contain.

LLMs are the state of the art in conversational Al including
chatbot applications. However, despite their remarkable general
knowledge and strong performance on benchmarks such as MMLU
and MedQA [19, 24], they cannot independently satsisty these re-
quirements. While they demonstrate a broad understanding of
generic molecules and popular product offerings, they lack reliable
awareness of specific product-level details, such as brand names,
packaging forms, or dosage forms [14].

A separate, but equally important requirement of the regulator
is that serious adverse events associated with the use of a drug
are reported within a defined time frame, as part of its pharma-
covigilance framework[13]. While not required, the regulator also
encourages the reporting of all adverse events associated with the
use of a drug product. Among other required data points, such
reports must include the drug product suspected and the adverse
reaction described. These requirements mean that beyond question-
answering the chatbot must incorporate a system for detecting
and taking appropriate action in cases where a user expresses an
adverse event in the course of their interaction with the chatbot.
Given the potentially large volume of user interactions, manually
reviewing conversations for adverse event detection would be im-
practical, thus motivating the development of automated systems
for detecting adverse events and drug names.

3 Related Works

Within the pharmaceutical domain, Al systems have long been
explored for medication management, dosage optimization, and
adverse event detection [5]. More recent studies have evaluated gen-
erative models specifically: Al-Dujaili et al. [2] assessed ChatGPT’s
accuracy in pharmacotherapy decision-making, finding moderate
reliability across repeated sessions. Beavers et al. [3] compared
chatbot responses to those from clinical pharmacists, concluding
that while LLMs can produce clinically acceptable information, they
fall short in completeness and safety. Han [11] and Li et al. [16]
further identified risks of misinformation in specialized contexts
such as prescription review. More positively, de Jesus et al. [8]
demonstrated that retrieval-augmented generation (RAG) using
official patient information leaflets can improve factual correctness
and clarity in medication instructions.

Outside the pharmaceutical context, several case studies have
reported successful deployment of retrieval-augmented chatbots
for specialized industrial domains, including software engineering
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Figure 1: Flow of the Chatbot Interaction from User Question
to Response Generation.

at Ericsson [6], aerospace [26], and tourism [15]. These efforts show
how domain-grounded retrieval can mitigate hallucinations and
improve contextual relevance, an insight increasingly applied to
regulated settings such as pharmacovigilance, where Painter et al.
[20] explored LLMs for drug-safety document retrieval.

These studies demonstrate the utility of LLMs for pharmaceutical-
oriented tasks and highlight the promise of chatbots built around
them in industrial contexts. In this paper we share our experience
developing an LLM-based chatbot to address user inquiries about
the drug products offered by a global pharmaceutical company.

4 Chatbot Design

We design the pharmaceutical chatbot to reduce the turnaround
time for pharmaceutical questions, thereby improving the efficiency
of health professionals by providing trusted, timely responses to
their questions. Figure 1 shows the flow of the chatbot. The chatbot
is designed using a retrieval-augmented generation (RAG) pipeline,
augmented by specialized components such as custom entity rec-
ognizers trained on domain-specific data, a hybrid retrieval com-
ponent that retrieves information from internal databases and the
web, and a confidence scoring component to measure the trustwor-
thiness of the response.

4.1 Corpus Creation for Internal Documents

Data Extraction. We ingest two data sources, i.e., the product mono-
graphs and the FAQ documents, as presented in section 2. When
extracting information from the product monograph, we first ex-
tract all the top-level sections. If a section contains subsections,
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we also extract the subsections and create a reference for each
subsection to their top-level section. Then we extract the tables as
separate entities and link them to their captions as metadata. The
FAQ questions are also extracted and mapped to their correspond-
ing answers.

Data Preprocessing and Indexing. When preprocessing the mono-
graphs, the extracted sections, subsections, and tables are processed
as individual data chunks. We summarize each data chunk and use
the summary for embedding creation. The embeddings of the sum-
maries are mapped to the original chunks and are indexed in a
vector store for embedding-based retrieval.

For data from the FAQ documents, each question forms a unique
chunk, and a direct reference is created to its corresponding answer.
These question-answer pairs are indexed in a vector store, allowing
the chatbot to perform embedding-based retrieval.

4.2 Chatbot Walkthrough

The chatbot accepts the user’s question in natural language and
maintains conversational state across multiple turns. Each request is
processed by handling the session state of the conversation. When a
user submits a question, the chatbot attaches a unique session iden-
tifier and retrieves any existing conversation context. This allows
the chatbot to recall previous questions and responses, maintaining
continuity across turns.

The chatbot applies custom-trained Named Entity Recognition
(NER) models to extract drug names, variants, and adverse events
from the user’s question. If multiple formulations or dosage forms
exist for the identified drug, the chatbot prompts the user to select
the correct variant in its response.

Based on the recognized drug, the chatbot retrieves relevant
information from multiple sources. First, it checks the FAQ docu-
ments of the identified drug, and uses a semantic similarity search
to find a question among the FAQs that matches the user’s question.
If a match to a question in the FAQ is found (i.e. semantic similarity
higher than the specified threshold), the corresponding answer
forms the basis of the chatbot’s response to the user’s question.

If the user’s question does not match a question in the FAQ doc-
ument (i.e. semantic similarity lower than the specified threshold),
the retrieval component expands the search to the product mono-
graph of the drug and a web search. The retrieval component uses
similarity search to find the most relevant paragraphs in the mono-
graph to answer the question. When conducting the web search,
the retrieval component restricts the search to trusted domains (e.g.,
official regulatory agencies).

The retrieved paragraphs and the web results, along with the
user’s question and session context, are passed to the LLM to gen-
erate a response. We construct a prompt that instructs the LLM
to prioritize information from the monograph, to avoid specula-
tion, and to produce a concise, well-structured answer. After the
LLM generates an answer, we compute a confidence score based
on factors such as the model’s internal certainty (log probabilities),
the similarity score between the answer and retrieved context, and
the sources of the information retrieved from the web. The final
response, with the references and the confidence score, is returned
to the user as shown in Figure 2. The adverse events, if detected
are recorded separately for patients safety reports.
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Al Assistant

Drug Bot
Drug Information Assistant Ask questions about drug information and dosages
3 Assistant

L Dashboard Q What drug are you asking about?

2

Products

©

Adverse Events

latex.

« Rituximab

Hi, welcome to Drug Assistant chatbot! You can ask me questions about dosage, administration,
& Admin storage, indications and contraindication on [xxxxx] drugs and | will try to answer it

According to the provided information, Rituximab does not contain any materials that may consist
of or contain natural latex. Additionally, the EU labelling and package leaflet for Rituximab do not
contain any warning in relation to latex. Therefore, the answer is: No, Rituximab does not contain

Internal Document  Confidence: e

This chatbot may provide incomplete or incorrect information.

v Common Questions <
What s rituximab?

What is the mechanism of
action for rituximab?

Does Rituximab contain
Does Rituximab contain latex? latex?

What is the density of
Rituximab?

What information is
available on vial overfill of
Rituximab?

What information is
available on the

Figure 2: User Interface of the Pharmaceutical Chatbot. The UI shows the questions asked by the user, the response by the
chatbot, the identified drug in the question, the source of the information used for the answer and the confidence score for the

response.

5 Challenges and Mitigations

During the development of the chatbot for the pharmaceutical
company, we had to address both technical and domain-specific
challenges to meet regulatory and functional requirements. In this
section, we discuss the challenges encountered and the strategies
adopted to mitigate them.

5.1 Data Retrieval Challenges

Challenge LRetrieving information accurately from product
monographs.

Our experience in the early stages of developing the chatbot
revealed that retrieving accurate information from the knowledge
base for a drug posed a significant challenge. This challenge was
particularly evident with the product monographs, which contain
both unstructured text (often in long continuous paragraphs) and
structured data in the form of tables. We found that the naive
approach of using conventional dense retrieval with vector em-
beddings was inadequate, as simply partitioned chunks could omit
important contextual information, reducing the effectiveness of the
retrieval step. Moreover, direct embeddings of tables fail to capture
their underlying structure and meaning, which limits their seman-
tic representation. This limitation in the retrieval step affected the
accuracy of the chatbot’s responses.

Mitigation: To address this challenge and improve the perfor-
mance of the retrieval step (and the subsequently generated answer),
we implemented a summarization strategy that uses an LLM to sum-
marize lengthy sections of the product monograph and generate
descriptions of tabular data, prior to embedding. The resulting sum-
maries and descriptions improve the effectiveness of the retrieval
process, as the embeddings created from them capture more context.

Importantly, while we use embeddings of the summaries for the
retrieval step, we maintain a map of each summary to its original
text, which is used in the generation step (rather than the summary
itself). This approach is similar to the strategy decribed by Liu [18]
and Eibich et al. [9].

Challenge II. Retrieving reliable and current web information
from reputable web source.

After implementing and integrating the web search component
into the chatbot, we observed that the search process frequently
returned information from unverified sources such as blogs. Given
that the pharmaceutical domain is highly regulated, and responses
from the chatbot must be accurate, trustworthy, and meet regulatory
standards, we cannot not rely on information from such sources.
Doing so risks the chatbot producing answers based on outdated,
speculative, or non-factual information, which can also violate
regulatory requirements.

Mitigation: To address this, we implemented a domain whitelist-
ing and ranking system. We consulted with our domain experts
to make a list of reputable web domains from which we want the
chatbot to retrieve information. We whitelisted these websites so
that our web search component only retrieves and uses information
from these pre-approved, reputable sources, such as Health Canada
and official company publications. Also, in consultation with the
domain experts, we implemented a ranking system to rank the
pre-approved domains by reliability, ensuring that regulatory data
took precedence over secondary literature or public repositories.
For instance, information from Health Canada (which maintains a
repository of verified information about drug products in Canada) is
given higher priority and credence than information from PubMed,
despite the latter’s strong reputation. This filtering and weighting
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mechanism reduced noise and improved the factual integrity of
generated responses.

5.2 Response Generation Challenges

Challenge III. Ensuring responses from the chatbot are trust-
worthy.

In designing our chatbot, an important consideration is that
users must find the answers from our chatbot useful [10, 27]. For a
critical domain like pharmaceuticals, the answers from our chatbot
must be factual and trustworthy for users to find them useful. In
this context, the utilization of LLMs presents a challenge as they
are prone to hallucination, potentially generating uncertain and
factually incorrect responses. In the pharmaceutical domain, such
hallucinations can have adverse consequences for users and erode
trust in the chatbot’s reliability. As such, answers generated by the
chatbot must be verifiable by users to build and maintain trust in
the chatbot’s responses.

Mitigation: To address this, we introduced a confidence scor-
ing strategy that quantifies the trustworthiness of the chatbot’s
response. The chatbot computes a confidence score based on the
source of information used to answer the question. For instance,
if the question is answered using information in the FAQ docu-
ment, the confidence score is calculated from the combination of
the retrieval similarity scores between the user’s question and the
FAQ entries with token-level log probabilities from the LLM. If
the question is answered using information from monographs and
web content, it combines the question complexity, the semantic
similarity score of the retrieved documents, source reliability from
web retrievals, and the token-level log probabilities from the LLM
to compute the confidence score. The confidence score is returned
with each response, allowing users to interpret the chatbot’s cer-
tainty in the response. The user might consider a response with a
95% confidence score as trustworthy, while a response with a 50%
confidence score would be considered less trustworthy and there-
fore the user will not rely on it for decision-making. By combining
multiple parameters to quantify the confidence of a response, the
confidence score ensures transparency and prevents our chatbot
from overconfidently providing low-certainty responses. In addi-
tion to confidence scores, the chatbot returns a list of consulted
documents, including hyperlinks to them where available, for each
response. This enables users to verify the chatbot’s answer against
the underlying source materials.

5.3 Challenges Related to User Interaction

Challenge IV. Robust recognition of drug names in questions. I

Users may make mistakes when typing drug names, such as
misspellings or incomplete names, which can hinder accurate re-
trieval. This presents a challenge for our chatbot, as inaccurate
or incomplete drug names can hamper the information retrieval
process. At the same time, requiring users to input drug names
precisely imposes a practical burden that may hinder the user expe-
rience. In addition to the potential for mistyped drug names, some
drug products have multiple names: a generic name, shared by all
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products containing the same active molecule, and a brand name
that uniquely identifies the specific offering of the pharmaceutical
company. A user may use either of these names in a question, ne-
cessitating a mechanism that consistently maps all known names
to the same underlying product and knowledge base.

Mitigation: To address this challenge, we implemented a type-
ahead recommendation feature in the chatbot interface that
suggests drug names as the user types. This feature reduces the
cognitive and typing burden on users, particularly for complex
drug names, and helps minimize input errors that could otherwise
hinder accurate retrieval. In addition, we trained our NER model
for drug names to tolerate minor misspellings and integrated a spell
correction mechanism that works at inference time to map mis-
spelled drug names to their correct forms. Finally, to address cases
where a drug has multiple names, we implemented a normaliza-
tion pipeline that links brand and generic names of the company’s
products. During data ingestion and processing the user’s ques-
tion, all drug mentions are normalized to a single canonical form,
ensuring that they resolve to the same underlying data collection
and responses remain consistent regardless of which variant of the
drug name appears in a question.

Challenge V. Handling multiple dosage forms and concentra-
tion levels of the same drug.

Some drugs in the database of the pharmaceutical company have
multiple dosage forms and/or concentration levels. The different
dosage forms sometimes have different concentration levels. For
example, drug A has both tablets (with a concentration level of 50
mcg) and injections (concentration level of 100 mg/mL) as dosage
forms. In some cases, users ask about the drug without specifying
the variant. For example, “How should I store drug A?”. This situa-
tion leaves the chatbot uncertain about which variant to reference,
increasing the risk of mixing up information in its responses.

Mitigation: To handle this ambiguity, we designed the chatbot
with an interactive clarification mechanism. When a query
about a product with multiple variants is presented, the chatbot
responds with a clarification prompt that lists the available dosage
forms or concentration levels. Once the user selects the relevant
form, that choice is stored in the session context and persists until
the user switches to another drug or formulation. This prevents
misinterpretation and ensures that accurate information is provided
to the user about the variant of interest.

5.4 Challenges Related to Compliance

Challenge VI. Identifying adverse events in user questions. I

As part of regulatory compliance for monitoring and patient
safety, our pharmaceutical chatbot must detect when users describe
possible adverse drug reactions, as such cases require escalation
or proper guidance. In line with pharmacovigilance responsibili-
ties—and recognizing that regulators require prompt reporting of
serious and serious and unexpected adverse reactions—the chatbot
must maintain the capability to identify potential adverse events in
user interactions. Each drug has its adverse event catalogue in the
product monograph; however, relying on the LLM alone to detect
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adverse events in users’ questions is not always accurate, especially
because adverse event descriptions may be implicit or ambiguous
and some reactions are uncommon and specific to a given product.
For example, for a drug administered as a patch, patients might
experience adverse reactions if the patch falls off frequently, and
such incidents have to be reported.

Mitigation: To address this challenge, we curated an adverse
event corpus derived from product monographs and reported
adverse-event databases, and trained a specialized NER model to
recognize adverse-event mentions in questions. When such events
are detected, the chatbot invokes a safety workflow that advises
the user on appropriate reporting procedures (through a formal
channel) and prevents the generation of potentially unsafe recom-
mendations. In addition, a record of the adverse event, including the
drug discussed in the conversation, is securely stored and shared
with the appropriate stakeholders for review and action.

6 Lessons Learned

Our experience building the chatbot for information inquiries in
the pharmaceutical domain yielded valuable lessons. In this section,
we share these lessons, as we believe they offer valuable insights to
the BoatSE and broader software engineering communities.

Designing such chatbots requires an interdisciplinary col-
laboration. It is important to have knowledge and inputs from
domain experts when building domain-specific chatbots. During
the development, our domain experts observed that our chatbot
missed details like the brand names of drugs and adverse events
associated with some drugs. With guidance from our domain ex-
perts, we curated domain-specific training data, built custom entity
recognizers, and ran continuous reviews with the domain experts.
This ensured that the chatbot could accurately answer questions
about specific drug brand names and accurately identify adverse
events, which is required for regulatory compliance.

Also, within our trusted, whitelisted domains, our domain ex-
perts found that information retrieved when using a drug’s generic
name can include details from brands other than our partner phar-
maceutical company. The experts explained the issue with this is
the same drug from a different manufacturers can have different
inactive ingredients and concentration levels. Thus, using this infor-
mation to answer questions can lead to inconsistent and incorrect
responses. As a lesson, we always ensure that priority is given to
the most trusted web domains. In our chatbot, results, with infor-
mation from our partner pharmaceutical company ranked highest,
followed by regulatory agencies and then secondary literature.

Prompting in Regulated Domains Requires Explicit Guard-
rails. Define the role and scope of the LLM when developing LLM-
based chatbots. When developing chatbots for specific domains,
it is essential to guard the chatbot from responding to questions
not related to the domain to prevent abuse of the chatbot. For
instance, in our chatbot, we have a default response when users ask
questions that are irrelevant, like “what is the recipe for apple pie”.
Also, we explicitly define additional guardrails in our prompt to
safeguard the chatbot to ensure the responses are safe. For example,
we instruct the model to use information from the approved sources
only, giving priority to those from highly rated pages and not rely

Abedu et al.

on its internal knowledge, which could be at risk of being outdated
or incorrect.

7 Conclusion

In this paper, we share our experience developing and deploying
a retrieval-augmented (RAG) LLM-based chatbot for pharmaceu-
tical question answering. Our chatbot integrates domain-specific
entity recognition to identify names of drugs in users’ questions,
embedding-based retrieval to obtain information from internal doc-
uments like monographs and FAQs for answer generation, per-
forms web searches on a curated whitelist of domains, and uses a
confidence-scoring framework to enhance the trustworthiness of
the chatbot’s responses. We also implement a patient safety feature
that detects and reports any adverse events in the user’s question
to align with regulatory compliance.

In the paper, we highlight some of the challenges we encountered
while deploying the chatbot and share the strategies we adopted to
mitigate these challenges. We highlight that domain expert guid-
ance is key when building safety-critical systems, that summary-
based retrieval can improve performance, and that ensuring infor-
mation for answering users’ questions is sourced from reputable
domains is essential. Our mitigation strategies and the lessons we
share can serve as a reference and guidance for software engineers
building chatbots in highly regulated domains and for the BoatSE
community.
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