Beyond Answer Engines: LLMs as Reasoning Partners in Data
Structures and Algorithms Education

Saad Zafar Khan"
University of Calgary
Department of Computer Science
Calgary, Alberta, Canada
saadzafarkhan@ucalgary.ca

Ahmad Abdellatif
University of Calgary
Electrical and Software Engineering
Calgary, Alberta, Canada
ahmad.abdellatif@ucalgary.ca

Desiree Leal
University of Calgary
Electrical and Software Engineering
Calgary, Alberta, Canada
desiree.leall @ucalgary.ca

Mea Wang
University of Calgary
Department of Computer Science
Calgary, Alberta, Canada
meawang@ucalgary.ca

Lucas Valenga
University of Calgary
Electrical and Software Engineering
Calgary, Alberta, Canada
lucas.rodriguesvalen@ucalgary.ca

Diwakar Krishnamurthy
University of Calgary
Electrical and Software Engineering
Calgary, Alberta, Canada
dkrishna@ucalgary.ca

Ronnie de Souza Santos
University of Calgary
Electrical and Software Engineering
Calgary, Alberta, Canada
ronnie.desouzasantos@ucalgary.ca

Abstract

Large Language Models (LLMs) are rapidly entering software en-
gineering education. As students turn to them for Data Structures
and Algorithms (DSA) tutoring, a critical question emerges: do they
foster genuine problem-solving skills or merely supply polished
answers? Moreover, their competence in DSA remains underex-
plored beyond benchmarks likely contaminated with training data.
We evaluate four LLMs—GPT-40, Claude 3.7 Sonnet, Llama 3.2, and
DeepSeek R1—on 80 LeetCode Top Interview 150 problems and
100 recent Weekly Contest problems, assessing code correctness,
maintainability, and explanatory reasoning as core software engi-
neering (SE) values. Results show that while Claude and DeepSeek
perform best on harder problems, all models’ average success rates
drop by ~49% on novel problems, revealing a critical gap in trans-
lating theoretical insights into effective implementations. On the
novel problems, DeepSeek attained the highest success rate (70%)
with fewer prompt turns but produced the least maintainable code,
whereas Claude solved fewer (50%) yet generated the most main-
tainable solutions, highlighting a trade-off between correctness
and pedagogical value. These findings suggest that LLMs are ca-
pable reasoning partners yet insufficient for autonomous problem-
solving. Thus, educators must carefully integrate these tools into
curricula to emphasize students’ critical reasoning and debugging
skills, and develop assessments that leverage or withstand LLM
assistance. Our work contributes a rigorous, multidimensional eval-
uation framework and practical recommendations for Al-assisted
learning in SE and computer science (CS) education, underscoring
critical evaluation over reliance on automated solutions.

“These authors contributed equally to this work.
T These authors contributed equally to this work.

ICSE °26, Rio De Janeiro, Brazil
2026. ACM ISBN xxxx-xxxx-xxxx-x/YYYY/MM
https://doi.org//nnnnnnn.nnnnnnn

CCS Concepts

« Social and professional topics — Software engineering ed-
ucation; Student assessment; « Computing methodologies —
Natural language processing; Machine learning; » Theory of com-
putation — Design and analysis of algorithms.

Keywords

Generative Artificial Intelligence (AI), Large Language Models
(LLMs), Software Engineering Education, Data Structures and Al-
gorithms, LeetCode, Al-assisted Learning

1 Introduction

LLMs are reshaping software engineering (SE) practice and edu-
cation—offering on-demand tutoring, generating/adapting learn-
ing materials, and supporting novel pedagogy and assessment
[20, 35, 66]. Their capacity to generate, explain, and debug code
makes them powerful aids for both students and professionals. In-
stitutions (e.g., universities) are accordingly experimenting with
policies to integrate LLMs into teaching [12]. Despite this growing
adoption, a critical question remains unanswered: do LLMs foster
deep, transferable problem-solving skills, or merely a facade of
understanding? Empirical evidence is still scarce on whether the
outputs learners consume (solutions, explanations, repairs) exhibit
the properties known to support conceptual grasp, debugging skill
development, and transfer to novel problems.

How students use LLMs. Students increasingly turn to LLMs to
explain concepts, debug errors, plan solution steps, and draft or
refactor code, with usage shaped by course goals and policies [37].
Adoption is broad for rapid feedback, summarization, and scaffold-
ing, yet students and instructors remain wary about reliability and
the need for verification [11, 32]. Use patterns are not uniform: some
learners engage selectively while others rely heavily, and trust in
GenAl influences both frequency and the kinds of tasks attempted

https://orcid.org/0009-0009-6522-8536
https://orcid.org/0009-0009-8329-0990
https://orcid.org/0009-0001-9044-104X
https://orcid.org/0000-0003-1863-9147
https://orcid.org/0000-0001-8400-9069
https://orcid.org/0000-0002-6098-4801
https://orcid.org/0000-0003-3235-6530
https://doi.org//nnnnnnn.nnnnnnn

ICSE °26, April 2026, Rio De Janeiro, Brazil

[4, 62]. Evidence warns that unchecked reliance can displace crit-
ical analysis and weaken debugging and decision-making skills
[78]. In response, instructors increasingly favour guided use and
assessment redesigns over blanket bans [42]. These dynamics leave
open whether current LLM use actually strengthens transferable
reasoning and debugging—precisely the gap our study interrogates.
Why DSA is the right testbed. DSA is a curricular cornerstone,
underpinning software design, performance, and scalability in both
computer science (CS2023, “Algorithmic Foundations” [39]) and
SE curricula (SE2014, “algorithms, data structures, and complex-
ity” [6]). Unlike open-ended domains such as software design or
system architecture, DSA problems are objectively gradable yet
require explicit reasoning about correctness and efficiency across
core structures including arrays, trees, graphs, and dynamic pro-
gramming. DSA pedagogy deliberately cultivates metacognitive
skills through incremental practice: systematic decomposition, com-
plexity analysis, and trade-off reasoning [52]. These are precisely
the skills that LLMs may either scaffold or undermine, making
DSA an ideal setting to assess whether model assistance fosters
durable understanding rather than polished but fragile solutions.
In SE education, these same competencies manifest in performance
debugging, trade-off analysis, and maintainable implementations,
positioning DSA as a controlled yet SE-relevant lens for evaluating
the risks and benefits of Al-assisted learning.

Benchmark competence # classroom learning. Frontier models
perform strongly on code synthesis (generating source code from
a higher-level specification) and repository-level code repair (e.g.,
GPT-40 and Llama-3.1 on HumanEval/MBPP; Claude 3.7 Sonnet
and DeepSeek R1 on SWE-bench Verified and contest-style tasks) [5,
21, 22]. However, benchmark success does not guarantee learning
outcomes: students still need durable mental models, the ability
to assess complexity and efficiency, diagnose subtle faults, and
generalize patterns to novel problems.

Prior work and instructor reports identify three tensions. (1)
Students may overrely on LLMs, removing the cognitive work of
analysis and debugging [42]. (2) Answers that look polished can
conceal algorithmic inefficiencies or errors that students struggle
to detect [79]. (3) Educators must adapt assessment and classroom
practice to harness LLMs without eroding integrity or skill de-
velopment [35, 41]. Consequently, there is a pressing need for a
rigorous DSA evaluation that goes beyond functional correctness
to assess the pedagogical quality of LLM outputs—including their
explanatory value, maintainability, and utility in debugging.

In our study, we evaluate four LLMs — GPT-40, Claude 3.7 Sonnet,
Llama 3.2, DeepSeek R1—on 80 Top Interview (TI) tasks and 100
recent weekly contest (WC) problems from LeetCode. We use a few-
shots chain-of-thought prompting strategy and score (i) correctness,
(ii) efficiency (asymptotic and empirical), (iii) explanation quality
via a rubric (invariants, edge cases, reasoning about complexity),
and (iv) debugging on seeded faults. We define novelty as problems
released after each model’s stated training cutoff and mark all items
with per-model novelty flags for analysis. Our study answers the
following Research Questions (RQ):

RQ1. To what extent do LLM-generated solutions satisfy func-
tional correctness and maintainability in novel problems?On
canonical TI items, models appear “polished” with near-perfect
solutions (> 97.5%), but on 100 temporally novel WC problems,

Khan, Leal, Valenca, Abdellatif, et. al

success rates drop sharply—DeepSeek R1: 70%, Claude 3.7: 50%,
GPT-40: 47%, Llama 3.2: 34%—revealing novelty brittleness behind
fluent, template-like narratives. In short, presentation quality stays
high while true generalization falters.

RQ2. How does the explanatory depth and theoretical jus-
tification of LLM outputs align with SE pedagogical frame-
works? As difficulty rises, we observe a clear trade-off: models that
push correctness tend to produce denser, harder-to-follow code
(lower MI), whereas models that prioritize clarity solve fewer hard
items (lower success). Despite the low average prompts-to-success
(1.4-1.7), correctness, not extra prompting, limits performance un-
der harder, varied tasks.

RQ3. How effectively do LLMs diagnose and repair faulty
code to support the development of a learners debugging
skills? Autonomous debugging remains limited: models rarely
fix issues in a single pass and typically require 1.4-1.7 prompts.
GPT/Claude/Llama often deliver “black-box” fixes, while DeepSeek
provides “glass-box” diagnostics with explicit counterexamples and
rationale that better support learner understanding.

Our findings translate into concrete, straightforward choices
for instructors, curriculum leads, and teaching teams: (1) Adopt
novelty-aware tasks (recent or held-out items) to counter benchmark
optimism and better elicit transferable reasoning. (2) Grade with
quality gates—maintainability and complexity thresholds alongside
correctness—so polished but precarious code is not rewarded. (3)
Require glass-box artifacts (code to concept alignment notes, edge
case checklists, and debugging rationales) that keep the cognitive
work with students even when LLMs are present. (4) Position LLMs
as reasoning partners, not answer engines, via debug-and-improve
assignments that use model output to scaffold analysis, refactoring,
and fault diagnosis. We package these patterns in an Instructor Play-
book with rubrics, templates, and ready-to-run scripts (e.g., MI/CC
calculators), all of which are provided in our publicly available
replication package on Zenodo [38], to enable immediate adoption
in DSA and follow-on SE courses while preserving core algorithmic
competencies.

2 Related Work

We synthesize prior work on LLM benchmarks and educational
deployments to identify persistent gaps in evaluating engineered
code quality and pedagogical processes.

2.1 LLMs for SE

Code generation benchmarks such as HumanEval, MBPP, and APPS
foreground single-turn functional accuracy (typically pass@k), which
limits visibility into explanation quality and maintainability. Re-
cent work introduces contamination-controlled test suites and
live, temporally novel streams (e.g., LiveCodeBench, LiveBench)
and broadens tasks to self-repair, execution, and unit-test reason-
ing [13, 17, 30, 33, 69, 72]. Breakpoint stresses long-horizon repair
by corrupting interdependent functions across system call graphs,
testing whether LLMs can reason beyond local fixes [28]. Similarly,
BigCodeBench requires compositional reasoning over diverse li-
braries and multi-tool instructions, highlighting deficits in realistic,
large-scale code generation [80]. LLM-as-judge methods promise
scalable rubric-aware scoring, but recent judge benchmarks report

Beyond Answer Engines: LLMs as Reasoning Partners in Data Structures and Algorithms Education

order sensitivity, prompt drift, and between-judge variance, motivat-
ing calibration protocols and human-rater reliability checks [19, 34].
LLM-based repair increasingly rivals or exceeds traditional APR
on Defects4]-scale suites; agentic critique-revise loops (e.g., Code-
Act) improve multi-turn repair and tool use [56, 71]. Still, most
studies treat debugging as a binary outcome, with limited analy-
sis of rationale quality or pedagogy. We therefore grade process
competence—fault localization, rationale quality, and repair under
bounded feedback budgets—so that improvements reflect teachable
debugging behaviours rather than single-endpoint success.

2.2 LLMs for SE Education

Large classroom deployments show that LLM assistants can accel-
erate progress and reduce cognitive load, yet risk over-reliance and
uneven learning outcomes [36, 49]. In novice debugging, pedagogi-
cally shaped chatbots improve help-seeking but require scaffolds
to avoid shallow fixes [75]. LLM-generated worked examples and
explanations can be perceived as clearer than peer-produced vari-
ants, but explanation correctness and teachability vary [46]. They
can also suggest alternative implementations and refactoring ap-
proaches, exposing students to diverse coding patterns [64]. Recent
studies on Al-assisted pair programming and prompting compe-
tence further highlight mixed effects on motivation, anxiety, and
strategy use [23, 43].

Surveys and reviews highlight personalization benefits alongside
concerns over academic integrity and “laziness” [7, 64]. Integrity
challenges persist because LLMs can solve typical homework at
scale, with over-reliance diminishing independent problem-solving
abilities [63]. Multiple strands explore rubric-aware auto-grading,
concept-based rubrics, and cross-task judge generalization in edu-
cation, alongside integrity concerns where LLMs can complete CS1-
style assignments [14, 48, 49, 57]. These studies indicate that while
LLMs can accelerate development speed, they risk introducing frag-
ile implementations that students lack the expertise to identify [64].
Across studies, the consistent recommendation is human-in-the-
loop calibration with transparent rubrics and reliability reporting
before operational deployment in coursework [14, 48, 57]. This sug-
gests that the pedagogical value of LLMs lies not in their ability to
act as answer engines, but as reasoning partners, simulating design
rationales and traceability between requirements and implementa-
tion.

2.3 Evidence for Research Gap

Prior work surfaces three recurring gaps that motivate our peda-
gogically grounded evaluation of LLMs:

(G1) Metric myopia. Leaderboards emphasize single-turn passek,
under-measuring explanation quality and maintainability [13, 17,
30, 33, 65]. Our study extends this by grading outputs not only on
correctness but also on explanation quality, readability, and main-
tainability using quantitative gates (MI, CC). This moves beyond
binary correctness to assess whether solutions are educationally
usable.

(G2) Generalization under uncertainty. Public benchmarks risk
contamination; temporally novel, problem-stream designs are re-
quired to assess out-of-distribution robustness [61, 69, 72]. We op-
erationalize this recommendation by combining canonical datasets

ICSE °26, April 2026, Rio De Janeiro, Brazil

(Top Interview 150) with temporally novel Weekly Contest prob-
lems, showing that success rates drop by nearly half under novelty.
This provides direct empirical evidence of the fragility of LLM com-
petence in authentic educational settings.

(G3) Process opacity in pedagogy. Prompt traces exist, but ex-
planation and debugging behaviours remain underexplored in au-
thentic educational settings [36, 58, 67, 68, 74-76]. We address this
by analyzing explanation quality across six rubric dimensions and
by contrasting “black-box” vs. “glass-box” debugging. In doing so,
we show how reasoning visibility (e.g., DeepSeek’s iterative traces)
creates pedagogical value beyond correctness.

In contrast to correctness-only leaderboards, our work con-
tributes an education-ready evaluation of DSA problem-solving.
We (i) grade explanations and maintainability alongside correctness
via a multidimensional evaluation rubric; (ii) probe generalization
using temporally novel problem streams; and (iii) ensure measure-
ment reliability through human ratings with inter-rater agreement
(k). We use bounded, scaffolded interactions to further illustrate
how models improve under fault-driven feedback, aligning evalua-
tion metrics with teachable practices.

3 Methods

The main goal of this study is to evaluate how LLMs can be ef-
fectively used as reasoning partners to solve DSA problems. The
following subsections outline the datasets, prompting strategy, in-
teraction protocols, and evaluation metrics that structure this inves-
tigation. To support transparency and reproducibility, all datasets,
prompts, model interactions, and evaluation results are available in
the accompanying Zenodo repository [38].

3.1 Datasets

To evaluate the LLMs’ performance on DSA problems, we resorted
to LeetCode as the source platform because it is one of the most
widely used repositories of DSA problems by both students and pro-
fessionals [17, 72, 73], ensuring familiarity and relevance. Its large
curated pool of problems also provides standardized difficulty levels
and diverse algorithmic categories, making it a practical benchmark
for evaluating LLM performance in educational contexts. We used
datasets, summarized in Table 1.

Top Interview 150 [45]. This review dataset contains questions
for various “must do” coding DSA interview problems. From this
dataset, we analyzed 80 (easy, medium and hard) problems.
Weekly and Biweekly Contests [44]. The contest dataset spans
from January 4th o May 318t 2025 (WC 431 [1]-452 [2]) and in-
cludes 100 post training-cutoff problems across a range of DSA
topics, including arrays, strings, stacks, dynamic programming, bi-
nary trees, and graphs. These problems ensured broad coverage
across difficulty levels while minimizing data leakage, as they were
released after each models’ known training cutoffs. For each contest
item we recorded the public release date and tagged per-model nov-
elty by comparing against the model’s stated pre-training cutoffs
(Table 2); the full problem list and flags are included in the artifact.

Evaluation Subset. To rigorously evaluate LLM performance, we
curated a stratified subset of problems from the Weekly Contest
benchmark. From an initial pool of 100 problems, we drew a strati-
fied random sample of 45 (15 Easy, 15 Medium, 15 Hard), balancing

ICSE °26, April 2026, Rio De Janeiro, Brazil

solved and unsolved instances to preserve outcome variability. Each
sampled problem was attempted by all four models, yielding 180
explanation artifacts (45 per model) that support within-problem
contrasts under our analysis plan.

Table 1: Summary of Datasets by difficulty

Dataset Total Used | Easy | Medium | Hard
Top Interview 150 (subset) 80 15 47 18
Weekly Contests 100 22 42 36

Table 2: Studied LLMs: Versions, Training Parameters etc

Model Version / Release Params Training Cutoff | Context Window
GPT gpt-40-2024-08-06 ~200B [3] 2023.09 128k tokens
Claude claude-3-7-sonnet-20250219 350B 2024.10 200k tokens
Llama llama-3.2 (2024.09) 90B / 11B* 2023.12 128k tokens
DeepSeek deepseek-r1 (2025-01-20) 671B Pre-2025 128k tokens

3.2 Models & Prompting

We evaluate four state-of-the-art LLMs—GPT-4o0, Claude 3.7 Sonnet,
Llama 3.2, and DeepSeek R1—because they are widely used and
show strong performance on software-engineering tasks relevant
to DSA [22, 27, 47]. The selected LLMs span proprietary services
that students commonly use and open-weight baselines valued by
instructors for inspection and reproducibility; they include both
general-purpose assistants and code/reasoning-tuned models. This
coverage serves our study goals—generalization to novel contest
problems (RQ1), explanation quality for formative feedback (RQ2),
and self-repair under debugging prompts (RQ3)—while enabling
stakeholder-relevant comparisons for classroom policy and tooling
and letting us separate the effects of model scale from training
emphasis when selecting assistants for labs. Model specifications
appear in Table 2.

Prompting protocol. To approximate realistic student usage
while preserving comparability, we employ few-shot chain-of-thought
prompt (i.e., step-by-step reasoning with 2-3 provided examples),
which have been shown to be the most effective prompting strategy
[77], with expert-role conditioning [54]; instructions require step-
wise reasoning, algorithmic justification and asymptotic analysis,
consistent with LeetCode-style tasks that explicitly mandate run-
time bounds. Each prompt contains task content—problem state-
ment, examples, constraints, and base starter code—reproduced
verbatim from the corresponding LeetCode problem page. All mod-
els are provided with this identical content, without task-specific
demonstrations or fine-tuning, to approximate naive student be-
haviour [47]. Figure 1 highlights the prompt structure.

Our problem dataset is representative but not exhaustive; pro-
prietary systems evolve and some training details are undisclosed.
We interpret results as comparative evidence under a fixed-in-time
snapshot and standardized prompting strategy.

Khan, Leal, Valenca, Abdellatif, et. al

You are an expert in algorithms and data structures, skilled in solving computational problems efficiently.
Carefully analyze the following problem and provide your response in two structured parts:

Part 1: Implement an optimized solution for the given problem, considering efficiency and readability.
The solution should be written in Python.

Part 2: Explain your approach in detail, including:

® The choice of algorithm and data structures.

© The reasoning behind these choices.

o The time and space complexity of the solution.

Problem Statement: {Description}.

Example inputs and outputs: {Example 1}, {Example 2}

Constraints: {Constraints}.

Base Code: {Base Code}.

If multiple approaches exist, compare them and explain why your chosen approach is preferable under
the given constraints.

Figure 1: Prompt Structure

3.3 Interaction Protocol

We evaluate each model under a standardized, bounded interaction
protocol that approximates instructor—student scaffolding while
enabling fair cross-model comparison.

Step 0 (Initialization / first attempt). For each problem, we
prompt the LLM with a single, fixed base prompt that contains the
full problem statement and I/O format and asks for a complete,
executable solution. We submit the model’s generated code (verba-
tim, without manual edits) to the LeetCode online judge (OJ) and
record the platform’s verdict and feedback: Accepted (AC), Wrong
Answer (WA), Runtime Error (RE), or Time Limit Exceeded (TLE),
along with the number of public tests passed/total and the OJ error
message.

Step 1 (Failure feedback). If the submission is not AC, we re-
prompt the same model with a structured debugging message that
includes the relevant OJ feedback from LeetCode (e.g., failing test
IDs, example input/output, and the platform error summary). We
never reveal the reference solution.

Step 2 (Hint provision). If the second attempt is still not AC,
we add the problem’s official LeetCode hints verbatim to the next
prompt, targeting the observed failure mode.

Step 3 (Iterative failure feedback). On subsequent non-AC at-
tempts, we return any newly failing cases and updated platform
messages from LeetCode. Interactions are capped at five total model
messages per problem with the sequence:

Base — Fail-info — Hint — Fail-info — Final attempt.

We allow up to five code submissions to LeetCode per problem with
early stopping on first AC. Let Attempts-to-Pass (AtP) € {1, 2,3,4,5, 00}
denote the index of the first accepted submission (or oo if unsolved
within budget). A problem is Solved iff AtP < 5; otherwise it is Un-
solved, and we record the terminal LeetCode verdict (WA/TLE/RE)
and best partial progress.

3.4 Experimental Setup

We orchestrate a uniform prompt — submit — feedback— re-
prompt loop for all models: each LLM is prompted, its code is sub-
mitted to the LeetCode O], and the platform’s verdict and feedback
(verdict class, number of public tests passed, error message) drive
the next attempt, up to five total. Figure 2 summarizes this end-to-
end pipeline. We randomized problem order per model, ran within
fixed windows to limit Ul/version drift, and log UI/OJ versions in
the artifact.

Beyond Answer Engines: LLMs as Reasoning Partners in Data Structures and Algorithms Education

Reprompt
Provide LLM with:

« Wrong Test Cases
 Leetcode Official Hints

« Error Type

« Number of test cases passed

LLM Prompt
|+ Problem it

* Constraints
» Base Code
« Requested Solution
- Approach Explanation|

DSA
Problem

(LeetCode Pass test

L cases
Submission

Figure 2: Experimental Setup

RQ1 (problem-solving performance). The base prompt elicits a
complete solution. Because our protocol early-stops within five
attempts, we do not report pass@1. Instead we measure: (1) AtP
distribution for solved items; (ii) Partial Correctness—for unsolved
items, the best fraction of public tests passed over the budget; and
(iii) the resource profile of the successful attempt only: Run time
(ms), Beats (run time) %, Memory (MB), and Beats (memory) %.
RQ2 (explanation quality). The prompt additionally requires a struc-
tured rationale, including chosen data structures/strategy and stated
time/space complexity (Fig. 1). We log the raw complexity strings
and score explanations with our rubric as in 3.5.2.

RQ3 (self-repair). Upon failure, we open a brief debugging loop:
return minimal failing-case details (e.g., “passed 702/989; returns
false ons = “gyye”, k = 3; expected true—identify the fault and
patch”). If the second attempt still fails, we provide the problem’s all
official hints verbatim from LeetCode and allow remaining attempts
within the five-attempt budget. For example: “Rethink the problem
with the following hints:
e Starting from each character, build the smallest special substring
interval containing it.
e Use dynamic programming on the obtained intervals to check
if it’s possible to pick at least k disjoint intervals.”

3.5 Evaluation Metrics

We conducted two evaluations: one assessing code quality, another
assessing explanation quality, which are detailed below.

3.5.1 Code Quality Metrics. We evaluate LLM-produced code on
three dimensions: maintainability, correctness, and efficiency. The
detailed criteria are summarized in Table 3, followed by a descrip-
tion of the maintainability analysis pipeline.

Table 3: Code quality metrics and thresholds

ICSE °26, April 2026, Rio De Janeiro, Brazil

(i) Maintainability Index (MI) [18], and (ii) Cyclomatic Complex-
ity (CC) [51] per function and CCax. A maintainability target of
MI > 70 and CCmax < 101s used, reflecting pedagogy-oriented read-
ability targets [18, 51]. For each (difficulty, model) cell, we report
median MI and CCpay, band distributions, and the proportion of so-
lutions meeting the target. For between-model comparisons on MI
and CCpax within each difficulty, we use paired Wilcoxon signed-
rank tests [70] across problems (reporting median paired differences
with 95% bootstrap CIs, 5,000 resamples, and Cliff’s § effect sizes)
[15]. For the binary maintainability gate MI > 70 A CCpax < 10,
we use McNemar’s test [53] on matched problem pairs. To control
multiplicity, we apply Benjamini-Hochberg (q=0.05) [9]. We also
report Spearman MI-CCpax correlations.

3.5.2 Explanation Quality Metrics. Two researchers independently
evaluated all 180 LLM outputs (per-dimension range 0.78-0.85). We
score each explanation on six dimensions, each on a 1-5 ordinal
scale (1 = insufficient, 3 = minimally adequate, 5 = exemplary) as
in Table 4. To ensure alignment and calibration, a small subset of
problems was jointly reviewed at the outset, and disagreements
were resolved through discussion before proceeding with the full
evaluation. To ensure fairness and consistency in scoring, we as-
sessed inter-rater reliability using the weighted quadratic Cohen’s
kappa [16]. This choice reflects the ordinal nature of our rubric,
where disagreements further apart on the scale are penalized more
heavily. Inter-rater reliability was in substantial agreement, with an
average Cohen’s kappa of 0.82 across all evaluations. The summary
can be seen in Table 5.

Drawing from constructivist learning theory [8], six different cri-
teria were selected to comprehensively evaluate pedagogical ef-
fectiveness rather than technical correctness alone. These criteria
also resonate with Bloom’s taxonomy [10], as they progress from
foundational understanding (e.g., clear examples, code-to-concept
mapping) to higher-order reasoning (e.g., theoretical justification,
detection of problems).

These metrics assess whether explanations facilitate deep under-
standing, systematic reasoning, and transfer learning, which are
core competencies required for algorithmic problem-solving in pro-
fessional software development contexts. Unlike metrics such as
computational complexity, which measure algorithm properties,
this criteria evaluates explanatory quality and instructional scaf-
folding essential for student learning outcomes.

Table 4: Rubric for Explanation Quality

We augment evaluation with automated static analysis using
radon [40]. For each model-produced Python solution, we compute:

Dimension Metrics, Bands, and Interpretation
Maintainability (a) Maintainability Index (MI) [18]: A composite metric that estimates how
maintainable (i.e., readable and understandable) the code is. Dimension Description & Scale Anchors
Bands [31]: 85-100 = highly maintainable, well-structured and easy to modify; Conceptual Depth | Measures how thoroughly the explanation covers the theory behind the algo-
65-84 = moderately maintainable, some complexity or verbosity may slow rithm and solution.
comprehension; <65 = difficult to maintain, twisted logic or long methods. Scale: 1 = vague restatement; 5 = articulates core ideas (invariants, subprob-
(b) Cyclomatic Complexity (CC) [51]: counts independent execution paths. lems/recurrence, trade-offs).
Bands: Low <10 = simple, easy to test; 11-20 = moderate complexity; >20 = Step-by-Step Assesses whether the explanation is decomposed into clear, ordered steps.
high complexity, hard to read, test, and refactor. Breakdown Scale: 1 = missing or muddled steps; 5 = clear, ordered reasoning with no gaps.
Correctness Test Case Pass Rate: Fraction of LeetCode test cases passed, including edge Theoretical Justi- | Evaluates proofs or rationales explaining why the solution works.
cases, invalid inputs, and boundary conditions. A solution is correct if it con- fication Scale: 1 = no rationale; 5 = concise proof sketch/loop invariant and time/space
sistently produces expected outputs across all categories. complexity.
Efficiency (a) Time Complexity (Big-O): asymptotic measure of worst-case runtime Code-to-Concept Checks how effectively the explanation links to the implementation.
growth relative to input size. Mapping Scale: 1 = code and logic are disjoint; 5 = variables/control flow map cleanly to
(b) Space Complexity and Memory Usage Profiling: evaluates extra mem- algorithmic roles.
ory beyond the input (auxiliary data structures) and overall memory consump- Use of Examples Examines whether illustrative examples clarify scenarios and edge cases.
tion at runtime. Scale: 1 = absent or irrelevant; 5 = well-chosen normal and edge case walk-
through.
Detection of Prob- | Evaluates ability to identify faults, edge cases, or limitations.
lems Scale: 1 = no issues identified; 5 = explicit diagnosis, cause, and principled fix.

ICSE °26, April 2026, Rio De Janeiro, Brazil

3.5.3 Pedagogical validity of metrics. Our rubric’s six dimensions
align with well-established learning mechanisms in CS/SE educa-
tion and cognitive science. Conceptual Depth and Code-to-Concept
Mapping target schema construction and abstraction—central to
novice program comprehension and developing competence [29,
60]. Step-by-Step Breakdown operationalizes systematic reason-
ing and decomposition; structured subgoaling improves problem-
solving and transfer, and systematic strategies are associated with
stronger novice debugging performance [24, 50]. Theoretical Justifi-
cation elicits explicit rationales (e.g., invariants/properties), support-
ing correctness-oriented reasoning and higher-level algorithmic
design as captured in novice assessments [26]. Use of Examples
leverages the worked-example effect to foster schema induction, re-
duce cognitive load, and enhance pattern recognition and transfer in
algorithmic problem solving [59]. Detection of Problems cultivates
metacognitive monitoring and error diagnosis—processes founda-
tional to effective problem solving and observed to differentiate
more systematic novice behaviour [24, 25]. Finally, Maintainability
metrics (MI/CC) provide pragmatic, widely used proxies for struc-
tural code qualities tied to understandability and maintenance effort
in practice [55]. Collectively, these dimensions supply actionable
indicators that Al-generated explanations are likely to support the
cognitive processes—abstraction, decomposition, metacognition,
and justification—linked to improved novice comprehension and
algorithmic thinking.

4 Results and Discussion

This section presents the results of our multi-dimensional anal-
ysis. We structure our findings around the RQs, presenting the
quantitative and qualitative evidence for each before discussing its
implications for education.

4.1 RQ1: To what extent do LLM-generated
solutions satisfy functional correctness and
maintainability in novel problems?

To understand how LLMs generate and present DSA solutions, we
evaluated both their correctness and code quality. Our analysis
reveals two fundamental challenges that directly impact their edu-
cational utility: (1) inflated performance on familiar problems mask-
ing limited generalization, and (2) a systematic trade-off between
solution correctness and maintainability that varies by model.

We evaluated model performance on the 80 questions from the
Top Interview 150 dataset; GPT and DeepSeek solved all problems,
Claude 98.8%, and Llama 97.5%. While superficially impressive,
this uniformly high success rate strongly suggests data contamina-
tion—these problems have likely appeared in training corpora, al-
lowing models to retrieve memorized solutions rather than demon-
strate genuine problem-solving capability.

To isolate true generalization ability from memorization, we eval-
uated models on novel Weekly Contest problems published after
each model’s training cutoff. Performance collapsed dramatically.
Success rates on problems fell to: DeepSeek 70% [60.4, 78.1], Claude
50% [40.4, 59.6], GPT 47% [37.5, 56.7], and Llama 34% [25.5, 43.7]
(95% Wilson ClIs). This represents an average performance drop of
48.8%. Moreover, detailed error analysis revealed that approximately

Khan, Leal, Valenca, Abdellatif, et. al

Table 5: Model Performance Metrics on Weekly Contests

Model Easy | Medium | Hard | Total Success Rate | Average Prompts | Cohen’s
GPT 21 23 3 47% 1.7 0.78
Claude 22 24 4 50% 15 0.82
Llama 15 18 2 34% 1.6 0.85
DeepSeek 22 32 17 70% 14 0.83
Average - - - - - 0.82

Table 6: Static Analysis of Maintainability

[MIDist.(%) [CCDist.(%) |
Model | n | MIMedian | CCqyg | CCunax | B1 | B2 | B3 | B1 | B2 | B3 | Pass (%)
Easy Problems
GPT 15 88.59 4.50 5 53.3 1333133933 | 6.7| 0.0 73.3
Claude 15 84.19 4.50 5 46.7 | 46.7 | 6.7 933 | 6.7 | 0.0 86.7
Llama 15 80.63 5.33 6 46.7 | 13.3 1 40.0 | 93.3 | 6.7 | 0.0 53.3
DeepSeek | 15 71.21 5.50 6 20.0 | 60.0 | 20.0 | 93.3 | 6.7 | 0.0 60.0
Medium Problems
GPT 15 77.61 7.50 8 21.4 | 64.3 | 14.3 | 78.6 | 21.4 | 0.0 57.1
Claude 15 74.72 8.50 10 26.7 | 73.3 | 0.0 | 60.0 | 33.3 | 6.7 60.0
Llama 15 68.18 7.00 8 6.7 | 46.7 | 46.7 | 80.0 | 13.3 | 6.7 26.7
DeepSeek | 15 60.28 9.50 10 6.7 | 33.3 | 60.0 | 60.0 | 20.0 | 20.0 26.7
Hard Problems
GPT 15 69.37 8.50 9 0.0 | 64.3 | 35.7 | 57.1 | 42.9 | 0.0 21.4
Claude 15 75.66 9.50 10 6.7 | 80.0 | 13.3 | 53.3 | 33.3 | 13.3 13.3
Llama 15 60.57 10.50 11 6.7 | 26.7 | 66.7 | 46.7 | 53.3 | 0.0 13.3
DeepSeek | 15 56.66 13.50 16 0.0 | 28.6 | 71.4 | 35.7 | 28.6 | 35.7 40.0

MI Dist Bins: B1 (High, > 85), B2 (Moderate, 65-84), B3 (Low, < 65). CC Dist Bins: B1
(Low, < 10), B2 (Moderate, 11-20), B3 (High, > 20).

70% of failures stemmed from incorrect outputs rather than time-
out or memory issues, indicating fundamental gaps in algorithmic
reasoning rather than mere inefficiency. Many failing submissions
still included fluent and well-structured reasoning, reinforcing that
explanation detail is not a reliable indicator of correctness.
Beyond correctness, we examined whether models maintain code
quality under increasing difficulty, as readable, maintainable code is
essential for learning; students must be able to understand, modify,
and debug solutions to internalize concepts. Static analysis of fif-
teen randomly selected problems revealed systematic degradation
across difficulty levels (Table 6). The median Maintainability Index
(MI) dropped from 80.63 on Easy problems to 67.52 on Hard prob-
lems, while median maximum Cyclomatic Complexity (CC) rose
from 6 to 11. Most critically, the proportion of solutions meeting
both maintainability thresholds (MI > 70, CCpax < 10) fell from
68.3% on Easy to just 23.3% on Hard problems. This indicates that
as algorithmic difficulty increases, generated code becomes system-
atically harder to read and maintain. As summarized in Table 7,
LLM success is highly dependent on the complexity of the soft-
ware task. Models show high reliability in simpler tasks like Arrays
and Sorting, where they can generate standard solutions. However,
correctness drops sharply in categories requiring complex state
management, such as Dynamic Programming (DP) and Tree-based
structures (success rates < 50%). This suggests that LLM fragility is
tied to software architecture challenges where global state and com-
plex data dependencies are central; this mirrors the maintainability
degradation observed as problem difficulty increases.
When we compared model pairs on Hard problems, a clear Pareto
trade-off emerged:
e DeepSeek maximized correctness (40.0% pass rate) but produced
the least maintainable code (MI = 56.7, CCax = 16)
e Claude sacrificed correctness (13.3% pass rate) but delivered the
most maintainable code (MI = 75.7, CCpax = 10)

Beyond Answer Engines: LLMs as Reasoning Partners in Data Structures and Algorithms Education

Table 7: LLM Competencies and Software Engineering Impact

SE Competency Key Categories Perf. | Design Impact

Basic Implementation | Array, Sort, Matrix High | Low technical debt
Resource Optimization | Hash, Heap, B-Search | Med | Critical structure choice
Complex State / Logic | DP, Trees, Strings Low | Architectural fragility

The results show a significant correctness—maintainability trade-
offin LLM outputs. As problem difficulty increases, models that max-
imize functional correctness (e.g. DeepSeek) systematically produce
code with higher structural complexity and lower maintainability.
Conversely, models that prioritize readability and modularity (e.g.
Claude) tend to sacrifice correctness on complex items.

This distinction is critical for CS/SE education. The architectural
choices made by the LLM—whether to prioritize a complex but
correct solution or a simple but incomplete one—directly dictate
its pedagogical use. An instructor might use a DeepSeek solution
to teach advanced optimization and logic, while a Claude solu-
tion is much better suited to teaching fundamental skills such as
refactoring, debugging, and maintaining code quality.

This tradeoff between correctness and maintainability highlights
that the educational value of LLMs extends beyond whether a solu-
tion simply passes all test cases. For students, code is not simply a
final product that is judged only by correctness, but also a medium
of learning where readability, structure, and explanation all con-
tribute. Thus, to fully understand their pedagogical utility, we must
also look beyond code output to the way models communicate their
implementation reasoning.

4.2 RQ2: How does the explanatory depth and
theoretical justification of LLM outputs
align with SE pedagogical frameworks?

To evaluate another pedagogical dimension, we next examine the
explanatory quality of model outputs, focusing on how well LLMs
scaffold understanding through conceptual depth, justification,
and practical reasoning. Our analysis reveals a consistent text-
book-tutor gap across models and difficulty levels. While LLMs
function as excellent interactive textbooks, they largely fail as prac-
tical tutors, struggling to model critical skills of example generation
and self-correction. As shown in Table 8, the models scored highly
on "textbook" qualities. For instance, on Easy problems, average
scores for Conceptual Depth (4.34/5) and Theoretical Justification
(4.26/5) were strong, and remained robust on Hard problems (4.09/5
and 4.01/5, respectively). This indicates a clear ability to articulate
algorithmic principles, map them to code, and explain efficiency in
a structured manner.

Two independent graders scored all explanation criteria. Agree-
ment was substantial across models (Cohen’s k € [0.78,0.85], as in
Table 5), supporting the stability of our reported rubric means.

However, this theoretical fluency breaks down when moving
to practical, "tutor-like" skills. For GPT, Claude, and Llama, Use of
Examples was a critical weakness, with scores rarely exceeding 2.1
and often falling below 1.5, indicating they merely rephrase exam-
ples from the prompt rather than generating novel ones. Telling
is the decline in Detection of Problems on Hard problems, where
scores for GPT (2.93), Claude (3.37), and Llama (2.77) reveal failure

ICSE °26, April 2026, Rio De Janeiro, Brazil

to self-critique when complexity increases. DeepSeek is a notable
exception. It achieved a perfect 5/5 on Use of Examples across
difficulties and consistently outperformed others on Detection of
Problems (3.77 on Hard). This superior performance directly corre-
lates with its visible, iterative reasoning traces, where it externalizes
a process of proposing, testing, and refuting candidate solutions.

This sharp drop-off in performance suggests a form of non-linear
brittleness. As problems shift from requiring formulaic explana-
tion to genuinely abductive reasoning (e.g., discovering a tricky
dynamic programming invariant or an off-by-one error in pointer
arithmetic), most models continue to narrate theory but fail to oper-
ationalize diagnostic behaviours like generating counter-examples
or reasoning about boundary conditions. This pattern mirrors a
known challenge in human learning—the transition from passive
explanation to active self-monitoring and test design.

For learners, LLMs act as excellent interactive textbooks—clarifying
recurrences, invariants, and asymptotics—yet weak practical men-
tors: they rarely demonstrate testing discipline or error diagnosis.
Uncritical use risks fluent-but-shallow understanding. For instruc-
tion, two interventions follow: (i) example-forcing prompts (“con-
struct a failing test and explain why it fails”) and (ii) diagnostic-
first prompts (“state two plausible bugs and design a check for
each”). These behaviours are not automatic byproducts of theo-
retical knowledge; they require explicit elicitation or models that
natively externalize their reasoning.

These gaps motivated RQ3: if models fail to self-monitor, can
they diagnose and repair faulty code when asked, and does that pro-
cess itself aid comprehension? We therefore turn from explanation
quality to debugging behaviour, measuring not only fix success but
also the clarity of the diagnostic steps offered to learners.

4.3 ROQ3: How effectively do LLMs diagnose and
repair faulty code to support the
development of a learners debugging skills?

Debugging capacity varied sharply between models. Table 8 shows
that Detection of Problems scores were consistently among the
lowest criteria, particularly on Hard problems (average = 3.21/5).
This suggests that even when models were prompted with the
failing test cases, they struggled to identify the specific source of
error. Similarly, Table 5 shows that all models required multiple
prompts to generate correct solutions, with averages ranging from
1.4 (DeepSeek) to 1.7 (GPT). This indicates that no model could
reliably self-correct in a single pass, underscoring the difficulty of
autonomous debugging.

Explanatory metrics reinforced these limitations: GPT, Claude,
and Llama all received low scores on Use of Examples (1.10-2.13),
rarely documenting how they used proved examples or generating
additional test cases to verify their fixes. In contrast, DeepSeek’s
Detection of Problems scores were the highest, achieving 5.00, 4.07,
and 3.87 on Easy, Medium and Hard problems respectively. Its
explanations frequently included synthetic inputs, step-by-step
traces of failing executions, and justification of why a repair worked.
Figure 3 illustrates this: DeepSeek required 630 seconds to generate
a corrected solution but produced a detailed trace of its reasoning
process. Qualitative analysis revealed two debugging styles:

ICSE °26, April 2026, Rio De Janeiro, Brazil

Table 8: Explanation quality scores across criteria, difficulty levels, and models across two graders

Khan, Leal, Valenca, Abdellatif, et. al

Criterion Easy Medium Hard
GPT | Claude | Llama | DeepSeek | GPT | Claude | Llama | DeepSeek | GPT | Claude | Llama | DeepSeek

Conceptual Depth 4.17 4.50 4.03 4.67 4.10 4.20 4.00 4.37 4.10 4.17 3.70 4.37
Step-by-Step Breakdown 4.30 4.53 3.80 4.67 4.17 4.30 3.60 4.43 3.93 3.97 3.27 4.10
Theoretical Justification 4.03 4.30 3.90 4.47 4.13 4.23 3.70 4.50 4.03 4.20 3.50 4.30
Code-to-Concept Mapping 4.717 4.97 4.63 4.97 3.93 4.03 3.57 4.47 3.93 4.23 3.80 4.43
Use of Examples 1.87 1.50 1.67 5.00 1.47 1.30 1.10 5.00 2.13 2.13 1.37 5.00
Detection of Problems 4.60 4.93 4.47 5.00 3.60 3.73 3.10 4.23 2.93 3.37 2.77 3.77

We are getting the wrong answer for [5,2,3,1] (expected 2, but getting 3). Let’s
simulate the current algorithm on [5,2,3,1]. Initial: [5,2,3,1] with indices 0:5, 1:2, 2:3,
3:1. Heap: (5+2=7, 0,1), (2+3=5, 1,2), (3+1=4, 2,3) — minis 4 at (2,3). ...

The problem: we have two entries for (1,2)—one with sum 5 (from initial) and one
with sum 6 (after merge). We want the new one (6) to be considered. The old one (5) is
stale because the value at index 2 changed. However, when we pop the old one

(5,1, 2), we check: alive[1] and alive[2] are True? next_ptr[1] = 2 (adjacent)
and prev_ptr[2] =1 (adjacent), so we would merge (1,2) again. But that is incorrect
because the value at index 2 is now 4, so the sum should be 2 + 4 = 6, not 5. The heap
entry (5, 1,2) is stale; we are not updating the heap when a node’s value changes.
Thus the heap contains pairs that are no longer valid after updates.

How to fix? We cannot update heap entries in heapq (no decrease-key), so we must
avoid using stale pairs. ...

How do we avoid processing stale pairs for the same indices? We can note that after a
node is updated, any pair that has that node must be reinserted with the new value?
But we don’t have a way to remove the old ones.

Alternatively, we can store more state in the heap: not just the sum, but also the
values that were used to compute the sum? Actually, even that is not sufficient
because the same pair of indices might appear multiple times with different sums.
Instead, we can use a lazy heap: we accept that the heap has stale entries. We just skip
them. ...

Figure 3: DeepSeek Reasoning Snapshot During Code Repair

(1) GPT, Claude, and Llama operated as “black-box” debuggers:
when presented with failing test cases, they produced corrected
code but offered minimal reasoning. GPT sometimes structured its
answers into problem identification, fix description, and validation,
but still obscured the deeper reasoning process. This efficiency-
oriented style produces correct outputs but yields low educational
value, since it answers the what but hides the why.

(2) DeepSeek consistently acted as a “glass-box” tutor. Its superior
scores on Detection of Problems and Use of Examples reflect a
visible self-corrective process: fault localization, explanation of
inefficiency, and justification for repairs. This transparency directly
supports pedagogical goals: explicit reasoning aligns with Cognitive
Apprenticeship by externalizing expert thought processes, with an
example shown in Figure 3. For novice learners, such “glass-box”
reasoning is invaluable for modeling systematic debugging.

The broader implication is that correctness alone is insufficient
for debugging pedagogy. Black-box fixes may benefit advanced DSA
learners seeking quick corrections, but they deprive novices of crit-
ical metacognitive scaffolding. DeepSeek’s reasoning transparency
highlights the potential LLMs have to be models of expert diagnos-
tic reasoning, bridging the gap between conceptual knowledge and
coding practice.

4.4 Implications for CS/SE Education

As LLMs become increasingly integrated into programming work-
flows, educators must prepare students not only to solve problems
independently, but also to leverage these tools effectively while
avoiding their documented limitations. This requires a fundamental

shift from traditional algorithmic education that emphasizes the
memorization of standard algorithms toward a more reflective ap-
proach that focuses on critical evaluation, optimization skills, and
the ability to anticipate and handle edge cases.

Additionally, the varied performance of different LLM models
across problem types and complexity levels suggests that educators
should develop nuanced guidelines for appropriate model selection
depending on specific learning objectives. SE and CS departments
should also consider developing clear policies regarding accept-
able LLM use in coursework that recognize these tools as valuable
resources, while still ensuring that tudents develop fundamental
problem-solving capabilities.

Our results highlight a set of challenges and opportunities for
how LLMs should be integrated into computing education. We
synthesize these implications around three recurring themes: (i) the
challenge of attaining correctness under novelty, (ii) the pedagogical
trade-off between correctness and maintainability, and (iii) the
importance of transparency in debugging and reasoning. Based on
our findings, we outline the following suggestions for designing
CS/SE curricula.

4.4.1 Integrate LLMs as reasoning partners. Our results show that
while LLMs can clearly articulate theoretical underpinnings (RQ2),
they fail to consistently implement correct or efficient solutions
(RQ1). To reduce black-box reliance, mandate students to external-
ize plans (e.g., data structure choices, expected complexity, antici-
pated edge cases) before coding that must align with the submitted
solution. Such scaffolding reduces reliance on black-box outputs
and helps learners connect conceptual reasoning to implementa-
tion. Furthermore, exposing students to the thinking process that
DeepSeek demonstrated (RQ3) can provide a detailed approach
to DSA selection, implementation, and verification of test cases.
This suggests potential pedagogical value in demonstrating the
importance of thorough problem analysis and iterative refinement
in algorithmic thinking.

4.4.2 Re-evaluate Educational Priorities. Our results show that
LLMs perform well on familiar benchmarks, but struggle to solve
novel and harder problems, often failing correctness, efficiency, or
maintainability criteria (RQ1-RQ2). This highlights the need for
curricula and assessments that prioritize efficiency, robustness, and
diagnostic clarity rather than correctness alone.

First, novelty-aware and LLM-resistant evaluations are essential.
Prefer post-cutoff or freshly authored items; include hidden edge
cases (e.g. non-textual images), and enforce explicit asymptotic (ef-
ficiency) targets. Second, balance correctness with maintainability
through clear quality gates. We operationalize this with thresh-
olds of MI>70 and CCpax <10 for full style/maintainability credit,
with partial credit for refactorings that improve MI/CC without

Beyond Answer Engines: LLMs as Reasoning Partners in Data Structures and Algorithms Education

breaking tests (see Playbook 5). Third, explicitly assess efficiency.
In our Weekly Contest data, 30.65% of failures were due to time-
limit exceeded (TLE) violations rather than purely incorrect DSA
implementations. Students should therefore be required to analyze
time/space complexity, not just produce working code. Exercises
can be designed to provide a slow baseline for students to refine
toward a target complexity.

4.4.3 Leverage debugging transparency. DeepSeek’s transparent
reasoning demonstrated pedagogical value by externalizing the
diagnostic process of fault localization, test case generation, and
repair justification (RQ3). In contrast, GPT, Claude, and Llama of-
ten corrected faults without explaining how. For novice learners,
transparent reasoning provides metacognitive scaffolding aligned
with Cognitive Apprenticeship theory, where expert thought pro-
cesses are made explicit. Thus, educators should simulate this trans-
parency by requiring students to describe their debugging rationale,
reinforcing deeper critical reasoning.

4.4.4 Shape policy and practice in LLM use. Given the diversity of
model performance, departments should establish policies for ap-
propriate pedagogical LLM use. For example, instructors may allow
models as conceptual scaffolds but restrict their use during high-
stakes exams, or pair long-reasoning assistants (e.g., DeepSeek)
with refactoring assistants (e.g., Claude) in instructional labs to
highlight complementary strengths. Clear guidelines can prevent
over-reliance while still recognizing the value of LLMs as learning
tools.

We present our recommendations for instructors in an Instructor
Playbook (Section 5), which includes policy templates, assignment
blueprints, grading rubrics, and example artifacts [38].

5 Instructor Playbook—LLMs as Reasoning
Partners (Data Structures & Algorithms)

Modern DSA courses face a practical dilemma: students now ar-
rive with powerful assistants, yet most guidance and assessments
still assume a pre-LLM classroom. Our playbook reframes LLMs
from “answer engines” into reasoning partners under a bounded,
auditable protocol—so instructors can harness explanation, plan-
ning, and debugging support without eroding core competencies
or assessment fairness. It is built directly from our study’s multi-
dimensional evidence (correctness, code quality, explanatory depth,
and self-repair) and packaged for immediate classroom use.

The playbook ships with ready-to-adopt materials that drop into
a standard DSA syllabus:

e Policy templates that define LLMs as constrained, transparent
assistants (bounded interactions, attribution, transcripts).

o Assessment blueprints that reward plan—code alignment, expla-
nation quality, and maintainable implementations—not just final
correctness.

® Rubrics for explanations, code quality/efficiency, and debugging
competence that TAs can apply consistently.

o Instructor/TA checklists for quick integrity triage (budget compli-
ance, plan freeze, transcript presence).

o Task sourcing guidance (novelty registry, topic tags) to keep prob-
lems fresh and resistant to memorized solutions.

How it helps a modern DSA curriculum.

ICSE °26, April 2026, Rio De Janeiro, Brazil

o Centers reasoning, not harvest. Students must externalize a short
plan (invariants, cases) before coding, then justify complexity
and reflect on edge cases. This turns LLM use into a scaffold for
thinking rather than a shortcut to answers.

o Balances speed with quality. Grading emphasizes readability and
structure alongside correctness, so “passes tests but brittle” code
no longer earns full credit.

o Makes debugging teachable. Fault-driven activities require locat-
ing and repairing issues with short rationale; instructors see how
students reason about failures, not only whether they fix them.

o Surfaces actionable signals. Transcripts and mini-defenses provide
fast indicators of authorship, grasp of trade-offs, and transfer to
novel problems—useful for feedback loops and integrity checks.

To keep adoption simple, we provide plug-and-play patterns that
align with common DSA learning outcomes:

o Explain— Code (E— C): plan-first submissions graded on plan—code
alignment and complexity justification.

o Debug&Improve (D&I): intentionally flawed or borderline solu-
tions that students must localize, repair, and test—making the
debugging process visible and graded.

o Contest Simulation (CT): post-cutoff or parameterized variants
under light time/attempt budgets to elicit transfer to novel prob-
lems.

Instructors adopt a simple weekly cadence (details in the toolkit):

(1) Weekly labs: short E—C tasks with transcripted, bounded LLM
support; TA spot-checks with mini-defenses.

(2) Periodic D&I labs: students fix seeded faults and explain the
repair; graders use one rubric across sections.

(3) Two time-boxed contests: novelty-aware items to measure trans-
fer; plan cards and attempt caps keep assistance fair.

(4) Summative checks: LLM-restricted or LLM-free exams (paper
coding, proof sketches) to verify individual mastery.

Using the playbook yields course-level analytics that inform
teaching decisions:

o Where students stall: rubric trends highlight weak edges (e.g.,
example use, edge-case reasoning) even when code passes.

o Trade-offs in practice: patterns in readability vs. correctness guide
which assistant to recommend for which activity.

o Transfer readiness: novelty-aware results separate memorized
competence from adaptable problem solving.

These insights mirror the study’s findings and give instructors
concrete levers (task design, model policy, grading focus) rather
than abstract recommendations

The appendix/companion artifact includes: syllabus-ready policy
text; concise rubrics; lab/contest templates; TA checklists; and light-
weight automation to streamline submission checks. Instructors
can adopt a single lab first, then scale to a full 10-13 week rollout
as needed.!

6 Threats to Validity

We organize threats as internal, construct, external, and reliabili-
ty/replicability, with concrete mitigations applied throughout.

! All materials, including sample tasks and scripts, are archived with a persistent DOL

ICSE °26, April 2026, Rio De Janeiro, Brazil

6.1 Internal Validity

Data leakage and memorization. Canonical LeetCode items (e.g.,
Top Interview 150) may appear in pretraining corpora. To assess
generalization under novelty, we added 100 post-training-cutoff
Weekly/Biweekly Contest problems (Jan—May 2025). We release
problem IDs and full transcripts to support independent verifica-
tion.

Protocol-induced bias. Our bounded, scaffolded interaction (fail-info
— hint — final) could favour models that benefit from staged feed-
back. We fixed the escalation schedule and exchange caps uniformly
across models; ablations of scaffolding are left to future work.
Prompt sensitivity. Outputs are prompt-dependent. We used a single
compact template for all tasks/models and publish it verbatim with
conversations to enable prompt-robustness studies.

6.2 Construct Validity

Adequacy of code-quality metrics. Cyclomatic Complexity (CC),
Maintainability Index (MI), and pass-rate correctness are proxies
and may miss facets such as readability or evolvability. We pair
static analysis with functional acceptance and efficiency, and report
disagreements (e.g., higher CC with stronger coverage) to avoid
over-interpreting any single metric.

Pedagogical value measurement. Explanation quality is rubric-scored
(conceptual depth, stepwise clarity, theory, code—concept mapping,
examples, fault diagnosis) and is partly subjective. Multiple raters
were used; we report Cohen’s k and adjudicate disagreements with
rubric anchors. Rubric and annotated examples are released.
Platform performance as pedagogical signal. While LeetCode accep-
tance measures functional correctness rather than direct learning
gains, our multi-dimensional evaluation provides strong, theory-
grounded proxies for educational utility. By triangulating correct-
ness with explanation quality (via our validated rubric) and de-
bugging transparency, we assess the pedagogical potential of LLM
outputs—a necessary precursor to classroom impact studies.

6.3 External Validity

Task/domain coverage. LeetCode emphasizes algorithmic kernels
under interview-style constraints; results may not transfer to sys-
tems programming or multi-module design. We stratified by topic
(arrays, graphs, DP, etc.) and difficulty (easy/medium/hard) and
included contest items.

Language/toolchain scope. We requested Python solutions; other lan-
guages (C++/Java) and IDE/tooling may shift efficiency trade-offs
and failure modes. Replication across languages and environments
is recommended.

6.4 Reliability and Replicability

Stochasticity and reproducibility. LLMs are nondeterministic and
web Uls hide temperature. We repeated attempts where feasible
under a fixed interaction budget and report acceptance (Solved/Un-
solved). Performance and explanation depth varied across attempts
and models; a more rigorous design would average multiple trials
per problem, which is beyond scope and noted for future work. We
release prompts, all turns, final code, and platform outcomes to

Khan, Leal, Valenca, Abdellatif, et. al

enable exact procedural replication.

Sample size and selection. Our 180-problem corpus spans topics and
difficulties but is not exhaustive. We mitigated selection bias via
stratified sampling and inclusion of unseen contest items; larger
preregistered samples would increase power.

Platform evolution. LeetCode may update hidden tests/constraints,
affecting verdicts. We log contest IDs, timestamps, failing I/O ex-
emplars, and acceptance statuses to anchor comparisons.

Key mitigations include (i) mixing canonical with post-cutoff con-
test problems, (ii) a transparent, bounded scaffolding protocol and
fixed prompt template, (iii) time-bounded runs with documented
versions, (iv) triangulation of code, efficiency, and explanation qual-
ity with inter-rater agreement, and (v) full artifact release.

7 Conclusion and Future Work

We contribute a multi-dimensional evaluation framework that ex-
tends beyond correctness to encompass explanation quality, main-
tainability, and debugging competence. When confronted with
novel problems that better approximate authentic coursework, all
four LLMS’ exhibited sharp performance declines, with success
rates dropping by approximately 49% and frequent breakdowns in
plan-to-code fidelity, robust debugging, and efficient implementa-
tion. Code maintainability also degraded in parallel with problem
difficulty. This disconnect between conceptual understanding and
practical implementation was striking — models articulated strong
explanations (mean Conceptual Depth = 4.12/5) yet struggled to
apply them effectively (Use of Examples < 2.13/5 for most models).
These findings frame LLMs as valuable reasoning partners rather
than autonomous problem-solvers.

Ultimately, this work argues for a pedagogical shift: instead of
asking “How can we stop students from using LLMs?", we should
be asking, “How can we design curricula that cultivate the uniquely
human skills of critical judgment, deep debugging, and rigorous
evaluation that these powerful tools currently lack?"

Looking ahead, we will (i) validate these patterns in situ through
multi-institution deployments and track longitudinal transfer from
foundational DSA courses into later SE experiences (e.g., testing,
capstone); (ii) study human—AI teaming in pair programming and
peer review, assessing whether an LLM can act as a “third partner”
that flags edge cases and maintainability risks; (iii) operationalize
two concrete pedagogical tools—a plan-to-code consistency checker
and an interactive refactoring tutor—to directly address observed
failure modes; and (iv) evaluate equity and accessibility to ensure
that Al-augmented pedagogy benefits learners with diverse prepa-
ration levels and needs. By moving beyond correctness-centric
benchmarks to a pedagogically-grounded evaluation, this work
provides the evidence and the tools needed to thoughtfully inte-
grate LLMs as partners in the cultivation of durable algorithmic
reasoning skills.

Beyond Answer Engines: LLMs as Reasoning Partners in Data Structures and Algorithms Education

References
[1] 2025. LeetCode Weekly Contest 431. https://leetcode.com/contest/weekly-contest-

[2

[3

[4

==

flaa

(1]

[12

[15

[16

[17

[18

[19

[20

[21

[22

[23

]

)

]

]

431/ Accessed 8 September 2025; contest date from standings resource.

2025. LeetCode Weekly Contest 452. https://leetcode.com/contest/weekly-contest-
452/ Accessed 8 September 2025; contest date from standings resource.

Asma Ben Abacha, Wen wai Yim, Yujuan Fu, Zhaoyi Sun, Meliha Yetisgen, Fei
Xia, and Thomas Lin. 2025. MEDEC: A Benchmark for Medical Error Detection
and Correction in Clinical Notes. arXiv:2412.19260 [cs.CL] https://arxiv.org/abs/
2412.19260

Matin Amoozadeh, David Daniels, Daye Nam, Aayush Kumar, Stella Chen,
Michael Hilton, Sruti Srinivasa Ragavan, and Mohammad Amin Alipour.
2024. Trust in Generative AI among students: An Exploratory Study.
arXiv:2310.04631 [cs.HC] https://arxiv.org/abs/2310.04631

Anthropic. 2025. Claude 3.7 Sonnet and Claude Code. https://www.anthropic.
com/news/claude-3-7-sonnet

Mark Ardis, David Budgen, Gregory W. Hislop, Jeff Offutt, Mark Sebern, and
Willem Visser. 2015. SE 2014: Curriculum Guidelines for Undergraduate Degree
Programs in Software Engineering. Computer 48, 11 (2015), 106-109. doi:10.1109/
MC.2015.345

R. Azoulay, T. Hirst, and S. Reches. 2025. Large Language Models in Computer
Science Classrooms: Ethical Challenges and Strategic Solutions. Applied Sciences
15, 4 (2025), 1793. doi:10.3390/app15041793

Steve Olusegun Bada. 2015. Constructivism Learning Theory: A Paradigm for
Teaching and Learning. IOSR Journal of Research & Method in Education (IOSR-
JRME) 5, 6 Ver. 1(2015), 66-70. doi:10.9790/7388-05616670

Yoav Benjamini and Yosef Hochberg. 1995. Controlling the False Discovery Rate:
A Practical and Powerful Approach to Multiple Testing. Journal of the Royal
Statistical Society. Series B (Methodological) 57, 1 (1995), 289-300. doi:10.1111/j.
2517-6161.1995.tb02031.x

Benjamin S. Bloom, Max D. Engelhart, Edward J. Furst, Walter H. Hill, and David R.
Krathwohl. 1956. Taxonomy of Educational Objectives: Handbook I, Cognitive
Domain. David McKay Company, New York. Handbook I of *Handbook: The
Classification of Educational Goals™.

Ritvik Budhiraja, Ishika Joshi, Jagat Sesh Challa, Harshal D. Akolekar, and Dhruv
Kumar. 2024. “It’s not like Jarvis, but it’s pretty close!” - Examining ChatGPT’s
Usage among Undergraduate Students in Computer Science. In Proceedings of the
26th Australasian Computing Education Conference (ACE 2024). ACM, 124-133.
doi:10.1145/3636243.3636257

C.KY. Chan. 2023. A Comprehensive Al Policy Education Framework for Uni-
versity Teaching and Learning. International Journal of Educational Technology
in Higher Education 20, 1 (2023), 38. doi:10.1186/s41239-023-00408-3

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, et al. 2021. Evaluating Large Lan-
guage Models Trained on Code. arXiv preprint arXiv:2107.03374 (2021).
Yucheng Chu, Hang Li, Kaiqi Yang, Harry Shomer, Hui Liu, Yasemin Copur-
Gencturk, and Jiliang Tang. 2025. A LLM-Powered Automatic Grading Framework
with Human-Level Guidelines Optimization. arXiv:2410.02165 [cs.AI] https:
//arxiv.org/abs/2410.02165

Norman Cliff. 1993. Dominance Statistics: Ordinal Analyses to Answer Ordinal
Questions. Psychological Bulletin 114, 3 (1993), 494-509.

Jacob Cohen. 1960. A Coefficient of Agreement for Nominal Scales. Ed-
ucational and Psychological Measurement 20, 1 (1960), 37-46. doi:10.1177/
001316446002000104

Tristan Coignion, Clément Quinton, and Romain Rouvoy. 2024. A Performance
Study of LLM-Generated Code on Leetcode. In Proceedings of the 28th International
Conference on Evaluation and Assessment in Software Engineering (EASE 2024).
ACM, 79-89. doi:10.1145/3661167.3661221

D. Coleman, D. Ash, B. Lowther, and P. Oman. 1994. Using metrics to evaluate
software system maintainability. Computer 27, 8 (1994), 44-49. doi:10.1109/2.
303623

Giuseppe Crupi, Rosalia Tufano, Alejandro Velasco, Antonio Mastropaolo, Denys
Poshyvanyk, and Gabriele Bavota. 2025. On the Effectiveness of LLM-as-a-
judge for Code Generation and Summarization. arXiv:2507.16587 [cs.SE] https:
//arxiv.org/abs/2507.16587

Paul Denny, James Prather, Brett A. Becker, James Finnie-Ansley, Arto Hellas,
Juho Leinonen, Andrew Luxton-Reilly, Brent N. Reeves, Eddie Antonio Santos,
and Sami Sarsa. 2024. Computing Education in the Era of Generative AI. Commun.
ACM 67, 2 (Jan. 2024), 56-67. doi:10.1145/3624720

Aaron Grattafiori et al. 2024. The Llama 3 Herd of Models.
arXiv:2407.21783 [cs.Al] https://arxiv.org/abs/2407.21783

DeepSeek-Al et al. 2025. DeepSeek-R1: Incentivizing Reasoning Capability in
LLMs via Reinforcement Learning. arXiv:2501.12948 [cs.CL] https://arxiv.org/
abs/2501.12948

Guangrui Fan, Dandan Liu, Rui Zhang, and Lihu Pan. 2025. The impact of
Al-assisted pair programming on student motivation, programming anxiety,
collaborative learning, and programming performance: a comparative study with
traditional pair programming and individual approaches. International Journal

[24

[25

[26]

~
=

[28

[29]

[30

[31

[32

(33]

[34

[35

[36

(37]

w
&,

[39

[40

[42

[43

ICSE °26, April 2026, Rio De Janeiro, Brazil

of STEM Education 12, 1 (2025), 16. doi:10.1186/s40594-025-00537-3

Sue Fitzgerald, Gary Lewandowski, Renée McCauley, Laurie Murphy, Beth Simon,
Lynda Thomas, and Carol Zander. 2008. Debugging: finding, fixing and flailing,
a multi-institutional study of novice debuggers. Computer Science Education 18,
2(2008), 93-116. doi:10.1080/08993400802114508

John H. Flavell. 1976. Metacognitive aspects of problem solving. In The Nature of
Intelligence, Lauren B. Resnick (Ed.). Lawrence Erlbaum Associates, 231-235.
David Ginat and Eti Menashe. 2015. SOLO Taxonomy for Assessing Novices’ Algo-
rithmic Design. In Proceedings of the 46th ACM Technical Symposium on Computer
Science Education (Kansas City, Missouri, USA) (SIGCSE ’15). Association for Com-
puting Machinery, New York, NY, USA, 452-457. do0i:10.1145/2676723.2677311
Kunal Handa, Drew Bent, Alex Tamkin, Miles McCain, Esin Durmus, Michael
Stern, Mike Schiraldi, Saffron Huang, Stuart Ritchie, Steven Syverud, Kamya
Jagadish, Margaret Vo, Matt Bell, and Deep Ganguli. 2025. Anthropic Education
Report: How University Students Use Claude. https://www.anthropic.com/news/
anthropic-education-report-how-university- students-use- claude

Kaivalya Hariharan, Uzay Girit, Atticus Wang, and Jacob Andreas. 2025. Break-
point: Scalable evaluation of system-level reasoning in LLM code agents.
arXiv:2506.00172 [cs.LG] https://arxiv.org/abs/2506.00172

Orit Hazzan, Tami Lapidot, and Noa Ragonis. 2011. Guide to Teaching Computer
Science: An Activity-Based Approach. Springer. doi:10.1007/978-0-85729-443-2
Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora,
Ethan Guo, Collin Burns, Samir Puranik, Horace He, Dawn Song, and Jacob
Steinhardt. 2021. Measuring Coding Challenge Competence With APPS. arXiv
preprint arXiv:2105.09938 (2021).

Tjasa Heri¢ko and Botjan Sumak. 2023. Exploring Maintainability Index Variants
for Software Maintainability Measurement in Object-Oriented Systems. Applied
Sciences 13, 5 (2023). doi:10.3390/app13052972

Irene Hou, Sophia Metille, Zhuo Li, Owen Man, Cynthia Zastudil, and Stephen
MacNeil. 2024. The Effects of Generative AI on Computing Students’ Help-
Seeking Preferences. arXiv:2401.02262 [cs.HC] https://arxiv.org/abs/2401.02262
Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang,
Sida Wang, Armando Solar-Lezama, Koushik Sen, and Ion Stoica. 2024. Live-
CodeBench: Holistic and Contamination Free Evaluation of Large Language
Models for Code. arXiv:2403.07974 [cs.SE] https://arxiv.org/abs/2403.07974
Hongchao Jiang, Yiming Chen, Yushi Cao, Hung yi Lee, and Robby T. Tan.
2025. CodeJudgeBench: Benchmarking LLM-as-a-Judge for Coding Tasks.
arXiv:2507.10535 [cs.CL] https://arxiv.org/abs/2507.10535

E. Kasneci, K. Sessler, S. Kiichemann, M. Bannert, D. Dementieva, F. Fischer, et al.
2023. ChatGPT for good? On opportunities and challenges of large language
models for education. Learning and Individual Differences (2023). doi:10.1016/].
lindif.2023.102274

Majeed Kazemitabaar, Runlong Ye, Xiaoning Wang, et al. 2024. CodeAid: Evalu-
ating a Classroom Deployment of an LLM-based Programming Assistant that
Balances Student and Educator Needs. In CHI "24. doi:10.1145/3613904.3642773
Hieke Keuning, Isaac Alpizar-Chacon, Ioanna Lykourentzou, Lauren Beehler,
Christian Képpe, Imke de Jong, and Sergey Sosnovsky. 2024. Students’ Perceptions
and Use of Generative Al Tools for Programming Across Different Computing
Courses. arXiv:2410.06865 [cs.CY] https://arxiv.org/abs/2410.06865

Saad Zafar Khan, Desiree Leal, Lucas Valenca, Ahmad Abdellatif, Mea Wang,
Diwakar Krishnamurthy, and Ronnie de Souza Santos. 2025. Replication Package
for: Beyond Answer Engines: LLMs as Reasoning Partners in Data Structures
and Algorithms Education. https://zenodo.org/records/17229516

Amruth N. Kumar, Rajendra K. Raj, Sherif G. Aly, Monica D. Anderson, Brett A.
Becker, Richard L. Blumenthal, Eric Eaton, Susan L. Epstein, Michael Goldweber,
Pankaj Jalote, Douglas Lea, Michael Oudshoorn, Marcelo Pias, Susan Reiser,
Christian Servin, Rahul Simha, Titus Winters, and Qiao Xiang. 2024. Computer
Science Curricula 2023. Association for Computing Machinery, New York, NY,
USA.

Michele Lacchia. 2023. Radon: Code Metrics in Python (v6.0.1). https://pypi.org/
project/radon/. Python package, MIT License, computes code metrics including
cyclomatic complexity, raw metrics, Halstead metrics, and Maintainability Index.
K. Y. Lau and S. Sotiriadis. 2023. Learning to program with large language
models: A case study with ChatGPT. Proceedings of the 28th ACM Conference on
Innovation and Technology in Computer Science Education 1 (2023). doi:10.1145/
3587102.3588830

Sam Lau and Philip Guo. 2023. From "Ban It Till We Understand It" to "Re-
sistance is Futile": How University Programming Instructors Plan to Adapt as
More Students Use AI Code Generation and Explanation Tools such as Chat-
GPT and GitHub Copilot. In Proceedings of the 2023 ACM Conference on Inter-
national Computing Education Research - Volume 1 (Chicago, IL, USA) (ICER
’23). Association for Computing Machinery, New York, NY, USA, 106-121.
doi:10.1145/3568813.3600138

D. Lee and E. Palmer. 2025. Prompt engineering in higher education: a systematic
review to help inform curricula. International Journal of Educational Technology
in Higher Education 22, 7 (2025). doi:10.1186/s41239-025-00503-7

https://leetcode.com/contest/weekly-contest-431/
https://leetcode.com/contest/weekly-contest-431/
https://leetcode.com/contest/weekly-contest-452/
https://leetcode.com/contest/weekly-contest-452/
https://arxiv.org/abs/2412.19260
https://arxiv.org/abs/2412.19260
https://arxiv.org/abs/2412.19260
https://arxiv.org/abs/2310.04631
https://arxiv.org/abs/2310.04631
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://doi.org/10.1109/MC.2015.345
https://doi.org/10.1109/MC.2015.345
https://doi.org/10.3390/app15041793
https://doi.org/10.9790/7388-05616670
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1145/3636243.3636257
https://doi.org/10.1186/s41239-023-00408-3
https://arxiv.org/abs/2410.02165
https://arxiv.org/abs/2410.02165
https://arxiv.org/abs/2410.02165
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1145/3661167.3661221
https://doi.org/10.1109/2.303623
https://doi.org/10.1109/2.303623
https://arxiv.org/abs/2507.16587
https://arxiv.org/abs/2507.16587
https://arxiv.org/abs/2507.16587
https://doi.org/10.1145/3624720
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://doi.org/10.1186/s40594-025-00537-3
https://doi.org/10.1080/08993400802114508
https://doi.org/10.1145/2676723.2677311
https://www.anthropic.com/news/anthropic-education-report-how-university-students-use-claude
https://www.anthropic.com/news/anthropic-education-report-how-university-students-use-claude
https://arxiv.org/abs/2506.00172
https://arxiv.org/abs/2506.00172
https://doi.org/10.1007/978-0-85729-443-2
https://doi.org/10.3390/app13052972
https://arxiv.org/abs/2401.02262
https://arxiv.org/abs/2401.02262
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2507.10535
https://arxiv.org/abs/2507.10535
https://doi.org/10.1016/j.lindif.2023.102274
https://doi.org/10.1016/j.lindif.2023.102274
https://doi.org/10.1145/3613904.3642773
https://arxiv.org/abs/2410.06865
https://arxiv.org/abs/2410.06865
https://zenodo.org/records/17229516
https://pypi.org/project/radon/
https://pypi.org/project/radon/
https://doi.org/10.1145/3587102.3588830
https://doi.org/10.1145/3587102.3588830
https://doi.org/10.1145/3568813.3600138
https://doi.org/10.1186/s41239-025-00503-7

ICSE °26, April 2026, Rio De Janeiro, Brazil

[44]
[45]

[46]

i~
=

[48

[49

[50]

[51

[52]

[53]

[54

[55

[56]

[57]

[58

[59]

[60

[61]

[62

[63]

[64]

[65

LeetCode. 2025. LeetCode Contest. https://leetcode.com/contest/. Accessed:
2025-02-28.

LeetCode. 2025. Top Interview 150.
interview-150/. Accessed: 2025-02-28.
Juho Leinonen, Paul Denny, Stephen MacNeil, Sami Sarsa, Seth Bernstein, Joanne
Kim, Andrew Tran, and Arto Hellas. 2023. Comparing Code Explanations Created
by Students and Large Language Models. In Proceedings of the 2023 Conference
on Innovation and Technology in Computer Science Education V.1. 124-130. doi:10.
1145/3587102.3588785

Nero Li, Shahar Broner, Yubin Kim, Katrina Mizuo, Elijah Sauder, Claire To, Albert
Wang, Ofek Gila, and Michael Shindler. 2025. Investigating the Capabilities
of Generative Al in Solving Data Structures, Algorithms, and Computability
Problems. In Proceedings of the 56th ACM Technical Symposium on Computer
Science Education V.1. 659-665. doi:10.1145/3641554.3701946

Yi Liu et al. 2025. Evaluating LLMs for Automated Scoring in Formative
Assessments of a Programming Course. Applied Sciences 15, 5 (2025), 2787.
doi:10.3390/app15052787

Wenhan Lyu, Yimeng Wang, Tingting (Rachel) Chung, Yifan Sun, and Yixuan
Zhang. 2024. Evaluating the Effectiveness of LLMs in Introductory Computer
Science Education: A Semester-Long Field Study. 63-74 pages. doi:10.1145/
3657604.3662036

Lauren E. Margulieux and Richard Catrambone. 2016. Improving problem solving
with subgoal labels in expository text and worked examples. Learning and
Instruction 42 (2016), 58-71. doi:10.1016/j.learninstruc.2015.12.002

Thomas J. McCabe. 1976. A Complexity Measure. IEEE Transactions on Software
Engineering SE-2, 4 (1976), 308-320. doi:10.1109/TSE.1976.233837

R. McCauley, S. Fitzgerald, G. Lewandowski, L. Murphy, B. Simon, L. Thomas,
and C. Zander. 2008. Teaching debugging skills in the 21st century. Proceedings
of the 13th annual conference on Innovation and technology in computer science
education (2008). doi:10.1145/1384271.1384387

Quinn McNemar. 1947. Note on the Sampling Error of the Difference between
Correlated Proportions or Percentages. Psychometrika 12, 2 (1947), 153-157.
doi:10.1007/BF02295996

Ethan R. Mollick and Lilach Mollick. 2023. Assigning Al: Seven Approaches for
Students, with Prompts. Technical Report. The Wharton School Research Paper.
doi:10.2139/ssrn.4475995 Available at SSRN: https://ssrn.com/abstract=4475995
or http://dx.doi.org/10.2139/ssrn.4475995.

P. Oman and J. Hagemeister. 1992. Metrics for assessing a software system’s
maintainability. In Proceedings Conference on Software Maintenance 1992. 337-344.
doi:10.1109/ICSM.1992.242525

Yicheng Ouyang, Jun Yang, and Lingming Zhang. 2024. Benchmarking Automated
Program Repair: An Extensive Study on Both Real-World and Artificial Bugs.
In Proceedings of the 33rd ACM SIGSOFT International Symposium on Software
Testing and Analysis (Vienna, Austria) (ISSTA 2024). Association for Computing
Machinery, New York, NY, USA, 440-452. doi:10.1145/3650212.3652140

Aditya Pathak, Rachit Gandhi, Vaibhav Uttam, Arnav Ramamoorthy, Pratyush
Ghosh, Aaryan Raj Jindal, Shreyash Verma, Aditya Mittal, Aashna Ased, Chirag
Khatri, Yashwanth Nakka, Devansh, Jagat Sesh Challa, and Dhruv Kumar. 2025.
Rubric Is All You Need: Improving LLM-Based Code Evaluation With Question-
Specific Rubrics. In Proceedings of the 2025 ACM Conference on International
Computing Education Research V.1. 181-195. doi:10.1145/3702652.3744220
Haritz Puerto, Martin Tutek, Somak Aditya, Xiaodan Zhu, and Iryna Gurevych.
2024. Code Prompting Elicits Conditional Reasoning Abilities in Text+Code
LLMs. arXiv preprint arXiv:2401.10065 (2024).

Alexander Renkl. 2014. Toward an instructionally oriented theory of example-
based learning. Cognitive Science 38, 1 (2014), 1-37. doi:10.1111/cogs.12086
Anthony Robins, Jennifer Rountree, and Nathan Rountree. 2003. Learning and
teaching programming: A review and discussion. Computer Science Education 13,
2(2003), 137-172. doi:10.1076/csed.13.2.137.14200

Oscar Sainz, Jon Campos, Iker Garcia-Ferrero, Julen Etxaniz, Oier Lopez de Lacalle,
and Eneko Agirre. 2023. NLP Evaluation in trouble: On the Need to Measure
LLM Data Contamination for each Benchmark. In Findings of the Association for
Computational Linguistics: EMNLP 2023, Houda Bouamor, Juan Pino, and Kalika
Bali (Eds.). Association for Computational Linguistics, Singapore, 10776-10787.
doi:10.18653/v1/2023 findings-emnlp.722

Ana Stojanov, Qian Liu, and Joyce Hwee Ling Koh. 2024. University students’ self-
reported reliance on ChatGPT for learning: A latent profile analysis. Computers
and Education: Artificial Intelligence 6 (2024), 100243. doi:10.1016/j.caeai.2024.
100243

Marielle Justine Sumilong. 2025. Instructional affect and learner motivation
in generative Al-restrictive and permissive classrooms. Frontiers in Education
Volume 10 - 2025 (2025). doi:10.3389/feduc.2025.1626802

Wannita Takerngsaksiri, Cleshan Warusavitarne, Christian Yaacoub, Matthew
Hee Keng Hou, and Chakkrit Tantithamthavorn. 2024. Students’ Perspective
on AI Code Completion: Benefits and Challenges. arXiv:2311.00177 [cs.SE]
https://arxiv.org/abs/2311.00177

Lun Wang, Chuangi Shi, Shaoshui Du, Yiyi Tao, Yixian Shen, Hang Zheng, Yanxin
Shen, and Xinyu Qiu. 2025. Performance Review on LLM for solving leetcode

https://leetcode.com/studyplan/top-

[66]

[67

[68

[70

71

[72

=
&

(74

[75

[76

[78

[79

[80

Khan, Leal, Valenca, Abdellatif, et. al

problems. arXiv:2502.15770 [cs.SE] https://arxiv.org/abs/2502.15770

Shen Wang, Tianlong Xu, Hang Li, Chaoli Zhang, Joleen Liang, Jiliang Tang,
Philip S. Yu, and Qingsong Wen. 2024. Large Language Models for Education: A
Survey and Outlook. arXiv:2403.18105 [cs.CL] https://arxiv.org/abs/2403.18105
Xuezhi Wang, Jason Wei, Dale Schuurmans, et al. 2022. Self-Consistency Improves
Chain of Thought Reasoning in Language Models. arXiv preprint arXiv:2203.11171
(2022).

Jason Wei, Xuezhi Wang, Dale Schuurmans, et al. 2022. Chain-of-Thought Prompt-
ing Elicits Reasoning in Large Language Models. arXiv preprint arXiv:2201.11903
(2022).

Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha
Jain, Ravid Shwartz-Ziv, Neel Jain, Khalid Saifullah, Sreemanti Dey, Shubh-
Agrawal, Sandeep Singh Sandha, Siddartha Naidu, Chinmay Hegde, Yann LeCun,
Tom Goldstein, Willie Neiswanger, and Micah Goldblum. 2025. LiveBench: A
Challenging, Contamination-Limited LLM Benchmark. arXiv:2406.19314 [cs.CL]
https://arxiv.org/abs/2406.19314

Frank Wilcoxon. 1945. Individual Comparisons by Ranking Methods. Biometrics
Bulletin 1, 6 (1945), 80-83.

Chungqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. 2023. Automated
Program Repair in the Era of Large Pre-trained Language Models. In Proceedings
of the 45th International Conference on Software Engineering (ICSE).

Yunhui Xia, Wei Shen, Yan Wang, Jason Klein Liu, Huifeng Sun, Siyue Wu, Jian
Hu, and Xiaolong Xu. 2025. LeetCodeDataset: A Temporal Dataset for Robust
Evaluation and Efficient Training of Code LLMs. arXiv:2504.14655 [cs.LG]
Jessica Xing. 2021. Here’s what job seekers need to know about LeetCode, the
coding-skills platform millions of developers use to ace the notoriously difficult
technical interviews at firms such as Apple, Amazon, and Google. Business
Insider (Nov. 2021). https://www.businessinsider.com/leetcode-coding-test-
apple-amazon-google-technical-interview-prep-job-2021-11

Yuankai Xue, Hanlin Chen, Gina R. Bai, Robert Tairas, and Yu Huang. 2024. Does
ChatGPT Help with Introductory Programming? An Experiment of Students
Using ChatGPT in CS1. In Proceedings of the 46th International Conference on
Software Engineering: Software Engineering Education and Training (ICSE-SEET
’24). 331-341. doi:10.1145/3639474.3640076

Stephanie Yang, Hanzhang Zhao, Yudian Xu, Karen Brennan, and Bertrand Schnei-
der. 2024. Debugging with an AI Tutor: Investigating Novice Help-seeking
Behaviors and Perceived Learning. In ICER "24. doi:10.1145/3632620.3671092
Shunyu Yao, Dian Bosma, Jeffrey Zhao, et al. 2023. Tree of Thoughts: Deliberate
Problem Solving with Large Language Models. arXiv preprint arXiv:2305.10601
(2023).

Adam Yuen, John Pangas, Md Mainul Hasan Polash, and Ahmad Abdellatif.
2025. Prompting Matters: Assessing the Effect of Prompting Techniques on LLM-
Generated Class Code. In Proceedings of ICSME 2025, NIER Track. Case Room 3,
ICSME 2025.

Chunpeng Zhai, Santoso Wibowo, and Lily D. Li. 2024. The effects of over-
reliance on Al dialogue systems on students’ cognitive abilities: a systematic
review. Smart Learning Environments 11 (2024). doi:10.1186/s40561-024-00316-7
Kyrie Zhixuan Zhou, Zachary Kilhoffer, Madelyn Rose Sanfilippo, Ted Un-
derwood, Ece Gumusel, Mengyi Wei, Abhinav Choudhry, and Jinjun Xiong.
2024. The teachers are confused as well: A Multiple-Stakeholder Ethics Dis-
cussion on Large Language Models in Computing Education. arXiv:2401.12453
https://arxiv.org/abs/2401.12453

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, and et al.
2025. BigCodeBench: Benchmarking Code Generation with Diverse Function
Calls and Complex Instructions. arXiv preprint arXiv:2406.15877 (2025).

https://leetcode.com/contest/
https://leetcode.com/studyplan/top-interview-150/
https://leetcode.com/studyplan/top-interview-150/
https://doi.org/10.1145/3587102.3588785
https://doi.org/10.1145/3587102.3588785
https://doi.org/10.1145/3641554.3701946
https://doi.org/10.3390/app15052787
https://doi.org/10.1145/3657604.3662036
https://doi.org/10.1145/3657604.3662036
https://doi.org/10.1016/j.learninstruc.2015.12.002
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1145/1384271.1384387
https://doi.org/10.1007/BF02295996
https://doi.org/10.2139/ssrn.4475995
https://ssrn.com/abstract=4475995
http://dx.doi.org/10.2139/ssrn.4475995
https://doi.org/10.1109/ICSM.1992.242525
https://doi.org/10.1145/3650212.3652140
https://doi.org/10.1145/3702652.3744220
https://doi.org/10.1111/cogs.12086
https://doi.org/10.1076/csed.13.2.137.14200
https://doi.org/10.18653/v1/2023.findings-emnlp.722
https://doi.org/10.1016/j.caeai.2024.100243
https://doi.org/10.1016/j.caeai.2024.100243
https://doi.org/10.3389/feduc.2025.1626802
https://arxiv.org/abs/2311.00177
https://arxiv.org/abs/2311.00177
https://arxiv.org/abs/2502.15770
https://arxiv.org/abs/2502.15770
https://arxiv.org/abs/2403.18105
https://arxiv.org/abs/2403.18105
https://arxiv.org/abs/2406.19314
https://arxiv.org/abs/2406.19314
https://arxiv.org/abs/2504.14655
https://www.businessinsider.com/leetcode-coding-test-apple-amazon-google-technical-interview-prep-job-2021-11
https://www.businessinsider.com/leetcode-coding-test-apple-amazon-google-technical-interview-prep-job-2021-11
https://doi.org/10.1145/3639474.3640076
https://doi.org/10.1145/3632620.3671092
https://doi.org/10.1186/s40561-024-00316-7
https://arxiv.org/abs/2401.12453
https://arxiv.org/abs/2401.12453

	Abstract
	1 Introduction
	2 Related Work
	2.1 LLMs for SE
	2.2 LLMs for SE Education
	2.3 Evidence for Research Gap

	3 Methods
	3.1 Datasets
	3.2 Models & Prompting
	3.3 Interaction Protocol
	3.4 Experimental Setup
	3.5 Evaluation Metrics

	4 Results and Discussion
	4.1 RQ1: To what extent do LLM-generated solutions satisfy functional correctness and maintainability in novel problems?
	4.2 RQ2: How does the explanatory depth and theoretical justification of LLM outputs align with SE pedagogical frameworks?
	4.3 RQ3: How effectively do LLMs diagnose and repair faulty code to support the development of a learners debugging skills?
	4.4 Implications for CS/SE Education

	5 Instructor Playbook—LLMs as Reasoning Partners (Data Structures & Algorithms)
	6 Threats to Validity
	6.1 Internal Validity
	6.2 Construct Validity
	6.3 External Validity
	6.4 Reliability and Replicability

	7 Conclusion and Future Work
	References

