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Abstract—Data engineering is a complex and time-consuming
part of data science, critical for transforming raw data into
actionable insights. This complexity stems from diverse and large
data sources, data-dependent logic, and exploratory workflows.
We perform an empirical evaluation of the performance of
three LLMs (GPT-40-mini, Claude-3.5-Haiku, and Gemini-2.0-
Flash), which have been shown to be effective at code generation,
on multi-step data engineering notebooks. Our study consid-
ers the impact of prompting with previous execution context,
output samples, and the application of iterative refinement on
entire notebooks and their individual steps. We benchmark
performance against the ARCADE dataset and introduce a new
benchmark derived from Spider 2.0 (Spider2-intents) to mitigate
potential data leakage. Our results show that LLMs generate
syntactically and semantically correct code, with output data
match scores reaching up to 80%, and BLEU scores of 0.35 on
our newly created Spider2-intents benchmark. While generated
code trends toward reduced runtime, memory, and CPU usage,
these improvements are not statistically significant. Further
analysis reveals that ambiguity in user intents is the leading
cause of functional correctness issues, accounting for 40.74%
of such cases. We also observe that iterative refinement shows
a modest but statistically inconclusive trend toward improved
output correctness, with gains of up to 2.9% after two rounds of
notebook and intent refinement each.

Index Terms—Data Engineering, Large Language Models
(LLMs), Code Generation, Multi-step Data Transformation

I. INTRODUCTION

Data engineering in the context of enterprise data science
is the process of extracting data from various sources (e.g.
databases and APIs), transforming it (e.g. cleaning and ag-
gregating), and loading it into a target system (e.g. data
warehouse, flat file, or other data structure). According to
Anaconda’s State of Data Science 2024 report [[1]], such data
preprocessing remains one of the most time-consuming tasks
in data science. 88% of data practitioners list data preparation
as the most time-consuming task, followed by data cleaning
at 83%. These statistics highlight the persistent bottlenecks
in the data analytics pipeline. The emergence of generative
Al offers a promising avenue to ameliorate these pain points;
67% of data science practitioners already report using Al in
some capacity (an 87% uptick from the previous year, 2023)
for data cleansing, visualization, and analytics tasks|[1] and we
envisage that greater use of Generative Al in data engineering
workflows could free up time for data scientists to focus on
big-picture tasks. In addition, the use of Generative Al, and

*Equal contribution. Listing order is random. All source code is available
at: https://github.com/Ilm-data-engineering/Ilm_etl

LLMs more specifically, could simplify data manipulation for
non-technical users, allowing low or no-code interfaces for
data analysis, consequently reducing reliance on specialists
and supporting faster decision-making.

However, despite the potential and promise LLMs hold,
their adoption for data engineering tasks still faces significant
challenges with respect to the generation of correct, efficient,
and reliable code, particularly in enterprise environments [2].
Existing LLM-based solutions often struggle with complex
logic, multi-step operations, and ambiguous user intents, re-
sulting in outputs that frequently require manual debugging
and repair [3]. Moreover, little is known about the practical
application of LLMs in orchestrating iterative data transfor-
mation workflows, where correctness and maintainability are
critical.

To address the knowledge gap on the performance of mod-
ern LLMs on multi-step data engineering tasks, the underlying
causes of any performance deficiencies, and the impact of
techniques such as iterative refinement, we empirically evalu-
ate the performance of three LLMs on the ARCADE dataset
and Spider2-intents datasets, which we crafted for this study.
Critically, we focus on Pandas-based workflows, whereas most
prior work centers on SQL-based workflows. The first aim
of our study is to establish the current LLM performance
on the multi-step data engineering code generation task. The
second goal of our work is to characterize the issues with
the generated code. Third, we aim to explore how techniques
like iterative refinement might be applied to improve the
effectiveness of LLMs on the aforementioned task. To this end,
we pose and answer the following research questions (RQs):

RQ1: How do modern LLMs perform on the multi-step data
engineering code generation task? We find that LLMs are
capable of generating syntactically and semantically correct
code, with output data match scores reaching up to 80% and
BLEU scores up to 0.35, when measured against ground truth
code. They also show trends of reduced runtime, memory and
and peak CPU usage. RQ2: What types of issues do we
see in the generated code? Our findings show that unsafe
operations (code without appropriate bounds and checks) are
the leading cause of runtime errors in generated code (ac-
counting for 50% of such cases), and ambiguity is the leading
issue associated with functional incorrectness (accounting for
40.74% of such cases). RQ3: Does increasing the amount of
iterative refinement improve correctness and performance?
We find that iterative refinement shows a modest but statisti-
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Fig. 1: Concept: LLM generates the next notebook intent providing previously generated code and sample input for context

cally inconclusive trend toward improved output correctness,
with gains of up to 2.9% after two rounds of notebook and
intent refinement. We also note runtime, memory, and CPU
utilization improvements.

Achieving satisfactory performance in a real world set-
ting with Pandas based workflows (with data transformations
occurring in-memory) would unlock opportunities for faster
data scientist experimentation and extracting value from data
in today’s data driven economy. To this end, we make the
following contributions:

« To the best of our knowledge, we are the first to evaluate
the key best practices for data engineering code gener-
ation; namely, providing notebook context, actual data
samples, and execution results as part of the prompt using
modern LLMs (Figure [T)).

« We investigate and provide a classification on the most
common types of errors and issues in the LLM generated
code.

« We evaluate the impact of iferative refinement on entire
notebook and their individual steps.

« We contribute a new, complex real world dataset derived
from Spider 2.0 for evaluating LLM performance on data
engineering tasks within the Python/Pandas framework.

II. RELATED WORKS

Text-to-SQL Code Generation. LL.Ms have shown remark-
able capabilities in program synthesis for SQL queries based
on natural language descriptions. Yu et al. [4] introduced the
Spider dataset, which has become a standard benchmark for
evaluating text-to-SQL models. M.Pourreza et al.[5]] explored
how decomposing the general task from Spider and other
datasets into smaller sub-tasks can be effective in improving
the performance of LLMs in SQL code generation. Lei et
al. 6] recently introduced Spider 2.0, focusing on real-world
text-to-SQL tasks. Building on this, Deng et al. [[7] proposed
techniques like self-refinement, format restriction, and column
exploration to boost performance—though achieving strong
results on this benchmark remains difficult. Other studies,
such as those by Hong et al. [8] and Li et al. [9], have
investigated the use of LLMs as database interfaces, evaluating
their ability to generate accurate SQL queries across diverse
domains using Chain-of-Thought (CoT) reasoning. Despite
these advances, few studies have explored decomposing nat-
ural language descriptions into Python-based data science
workflows, especially for multi-step transformation tasks.

Code Generation for Data Engineering Tasks. LLMs have
been proven to be effective at code generation. For example,
Austin et al. [[10] and Jain et al. [11] studied LLMs for

general program synthesis, demonstrating their effectiveness in
generating structured code. Nam et al. [[12] explored predictive
synthesis of API-centric code, which could be particularly
relevant for data engineering tasks involving Pandas API calls.
Additionally, Ma et al. [13] proposed leveraging LLMs as
generic data operators for structured data processing to handle
individual data transformations steps.

Recent work has explored fully automating the end-to-end
data science and research process; but not specifically the data
engineering task. Samuel et al. [[14]] and Lu et al. [[15]] included
using an LLM to fulfill the data engineer role as part of their
efforts to automate the scientific process. Grosnit et al. [16]]
proposed a model to automate the entire data science life cycle
by learning from experience.

A number of benchmarks exist for data science tasks, with
a subset of those specifically tailored to data engineering
tasks. Lai et al. [[17] introduced the DS-1000 benchmark for
data science tasks which include data transformations. While
the DS-1000 is a useful benchmark, its component tasks are
independent of each other and as such, it falls short of being
representative of real-world multi-step data transformations.
Yin et al. [[18] introduced the ARCADE data set that contains
notebooks with multiple rounds of natural language “user
intents” and code. They show that a fine tuned 62B parameter
model can achieve relatively good pass@k performance but
only for higher values of k. Huang et al. [19] introduced
ExeDS, an evaluation dataset for execution evaluation for data
science code generation tasks. ExeDS contains a set of 534
problems from Jupyter Notebooks, each consisting of code
context, task description, reference program, and the desired
execution output. Wen et Al. [20] extended the work of Yin
et al. [18]] to include synthetic data samples in addition to
notebook context passed as part of the prompt to generate the
next user intent in a multi-step notebook. Quoc et al. [21]]
explored the use of chain-of-thought reasoning and iterative
refinement to generate general data science code, evaluating
on the DS-1000 data set.

A noteworthy gap in the existing literature is the absence
of a method that effectively integrates and leverages the key
strengths of previously proposed approaches for generating
multi-step data engineering code using LLMs. In addition,
many studies (and the approaches they introduce) in the litera-
ture are dated and limited, lacking comprehensive evaluations
with contemporary LLMs, with said evaluations neglecting
runtime performance assessments and failing to reflect realistic
enterprise scenarios.

To the best of our knowledge, we are the first to evaluate
the performance of various modern LLMs for multi-step



data engineering code generation using real data, notebook
context, and execution feedback, while also contributing a
novel dataset, a classification of common code issues, and an
analysis of iterative refinement effects.

III. TERMINOLOGY

Before presenting further details on our empirical study, we
provide an overview of the terminology used throughout this
paper.

« Intent: A natural language description of a specific data
transformation task provided by a user. An example is
provided in the second cell of Figure [2]

« Notebook: An interactive execution environment widely
used by data engineers and data scientists for their
flexibility and support for exploratory workflows. In the
context of this study, ‘notebook* also refers to a sequence
of related data transformation intents and the code that
satisfies those intents. The ARCADE and our Spider2-
intents (see Section contain such intent-code pairs.

o Iteration: A prompt-response exchange with an LLM
aimed at generating code to fulfill a given intent. A
single iferation refers to one such prompt-response pair,
where the model generates code without further self-
improvement. In contrast, when self-refinement is ap-
plied, previously generated code and outputs are passed
back to the LLM to improve or fix the generated code.

« Round: A single pass through all intents associated with
a notebook. During each round, intents are addressed
sequentially. The LLM is provided with code and output
generated in previous rounds as context.

o Memory: LLM-generated code and the corresponding
outputs or errors (following execution) from each round
and iteration that are stored and subsequently included
in the prompt of further iterations and rounds to enable
self-improvement.

IV. CASE STUDY SETUP

In this section, we present the approach we took to answer-
ing our research questions, including the datasets used, prompt
structure, experimental setting, and model evaluation criteria.

A. Datasets

In this study, we use two popular datasets, namely AR-
CADE and Spider 2.0-lite. Furthermore, we construct a
new dataset called Spider2-intents with a greater amount of
complexity than ARCADE, as measured by the number of
required data transformations and complexity of the input data
ARCADE.

1) ARCADE: ARCADE (Answer Repository for Compu-
tational Analysis and Data Engineering), created by Yin et
al. [[18]], contains 1082 natural language-to-code tasks sourced
from both mined and manually authored Jupyter notebooks. It
is split into two subsets:

« ARCADE-Existing: Tasks collected from repositories

like JulCe [22] and BigQuery. These notebooks were

filtered to include at least three Pandas API calls, or two
API calls preceded by a descriptive markdown cell.

« ARCADE-New: Notebooks manually created using
datasets released after February 2022 to avoid potential
data leakage. These notebooks contain exploratory data
analysis (EDA) and transformation tasks with a minimum
of five Pandas operations per notebook.

Each task includes a sequence of natural language user
intents, ground-truth code, and expected output data. Com-
pared to other benchmarks like DS-1000 [17], ARCADE
emphasizes execution feasibility and realistic task descriptions:
approximately 45% of intents are deliberately underspecified,
reflecting real LLM usage scenarios.

2) Spider2-intents (Derived Dataset): In addition to AR-
CADE, we construct Spider2-intents, a new dataset based
on Spider 2.0-lite [[6], a benchmark focused on complex
enterprise text-to-SQL tasks, with each task characterized by
a complex user intent, a ground-truth SQL query, and its
execution output. We expand this dataset to support multi-step
evaluation. More specifically, since Spider 2.0-lite includes
only single-intent SQL tasks, we decompose them into se-
quential natural language intents paired with equivalent Python
(Pandas) code using the following procedure:

1) We extract the SQLite-based subset (tasks with directly
accessible input data) and export their tables to CSV files.

2) We leverage GPT-40 to automatically generate the in-
structions (intents) and corresponding Pandas code to
mirror the logic of the original SQOL.

3) The first three authors manually review and debug the
generated code to ensure that the final notebook produces
identical output to the original SQL result.

4) Finally, we group intent-code pairs into notebooks, with
each notebook consisting, on average, of seven such pairs.

As Spider 2.0-lite was released after major LLM pretraining
corpora were finalized, and we curated spider2-intents manu-
ally, we believe this dataset provides a trustworthy testbed that
we can validate results from the ARCADE dataset on, and we
use it as such.

Table [I] provides key statistics across the datasets we use in
this study. The original columns describe the characteristics
of the source datasets, while the retained columns reflect
the subsets of the source datasets we use in our study af-
ter applying appropriate filtering criteria. In particular , we
exclude any ARCADE intents for which the ground truth code
could not be executed successfully. In addition, we include
only tasks derived from local subset of Spider2-lite that
provided ground truth SQL code. Note that Spider2-intents
contains a comparable number of intents per notebook and
transformation complexity to ARCADE, while being derived
from independently released enterprise SQL tasks.

Both datasets feature collections of multiple intents (note-
books) aimed at achieving an overarching objective. This struc-
ture allows us to evaluate the performance of LLMs on multi-
step code generation tasks. In addition, they support execution-



TABLE I: Dataset Description

Metric ARCADE-Existing ARCADE-New Spider 2.0-lite (local subset)  Spider2-intents
Original ~ Retained  Original  Retained Original Retained

Intents 476 323 585 404 135 24 169

Intents per Notebook 7.68 6.10 9.44 6.97 1 1 7.04

Notebooks 62 53 62 58 135 24 24

Lines of code/Intent 2.28 1.99 2.83 2.99 53.3(SQL) 52.8(SQL) 3.78

Average Number of Transformations 2.32 1.67 5.89 4.02  10.92(SQL) 11(SQL) -

driven evaluation by providing ground truth output data either
directly (Spider 2.0-intents) or indirectly (ARCADE, where
expected output can be obtained by executing the ground truth
code). This is valuable for execution-grounded evaluation and
helps us avoid relying solely on surface-level metrics like the
BLEU score.

B. Prompt Structure

Effective prompting is essential for generating satisfactory
code with LLMs. To support iterative improvement, we in-
clude previous code outputs and execution results as context
from earlier rounds and intents. The prompt consists of the
following components:

1) LLM Role Description: Defines the LLM’s task and
objectives.

Setup Code from the Original Notebook: Provides
environmental setup code, including imported libraries
and predefined functions.

Next User Intent: Specifies the transformation or task to
be performed.

Previous Intents and Code/Output Pairs from the
Current Round: Offers same round previous intents
context for continuity.

Prior Rounds’ Intents and Code/Output Pairs: Pro-
vides historical context to facilitate learning from past
rounds, including the execution results from generated
code in those rounds.

Output Requirements: A description of the expected
output from the LLM to guide it to generate valid,
executable Python code that meets task objectives.
Sample Input: Provides the first 10 rows of each data
frame and series due to compute and context-window
constraints.

2)

3)

4)

5)

6)

7)

We designed this prompt structure based on insights from
several recent papers on self-improvement using context [3]]
[23]] [24]]. These works suggest that including execution history
and structured inputs can help LLMs reason more effectively
and improve the functional correctness of generated code over
multiple iterations.

Figure 2] shows the structure of our prompt, exemplifying its
form after multiple infents have been introduced in a sample
second round.

System Instruction

Role: You are a skilled data engineer tasked
with completing existing Python code for the
next user intent.

You are provided the previous code, sample rows
of the data frames, and next user intent to
implement.

Existing Code: import pandas as pd

import numpy as np

alc = pd.read_csv ("drinks.csv")

[...]

Refinement History

# Round 1 Intent 6
Intent: Set the continent for United States
and Canada to NA

Code: alc.loc[alc[’country’] == "USA’,
"continent’] = 'NA’
alc.locl[alc[’country’] =="'Canada’,
"continent’] = 'NA’
Output: { alc’: ' [{"country":"Afg...", ...}/,
[...1}

= J

Execution Context

# Round 2 Intent 5

Intent: Get the top 10 countries that drink
the most wine

Final Code: top_10_wine = alc.nlargest (10,
"wine_servings’) [ [ "country’,
"wine_servings’ ] 1]

Output: { "top_10_wine’: ' [{ "country":
"France", "wine_servings": 370 }, ...1’ }

Current Instruction

# Round 2 Intent 6

Next Intent to implement: Rank the continents
that drink the least amount of wine on average
Sample Input: { "alc’: ’ [{ "country":
"Afghanistan", "beer_servings": 0, ... 1’ }

Fig. 2: Multiple Rounds and Multiple Iferations Prompting
Structure.




C. Experimental Setting

In this study, we focus on a practical data science scenario:
generating data engineering code based on a user-provided
intent. Specifically, given a source schema, a sample of source
data, and a natural language description of the desired transfor-
mations, we prompt an LLM to generate transformation logic
in Python using the Pandas library. Alongside this code, the
model is also expected to generate the corresponding target
schema and sample output data. Furthermore, we evaluate
the performance of LLMs with iterative refinement. More
specifically, at each time step, we prompt the LLM multiple
times, each time modifying the context by including the code
generated by the LLM in the previous time step, along with
any execution outputs/errors generated on execution of said
previously generated code. Figure [T] shows how we implement
code generation with iterative refinement.

We scope our study to tabular data transformations imple-
mented using Pandas. While many real-world data transfor-
mation workflows involve non-tabular data, we believe our
study offers insights that can inform progress toward the
development of such full-featured LLM-based data transfor-
mation systems. In addition, this defined scope ensures that
all generated code produces structured, executable outputs in
the form of Pandas data frames. This reflects a common real-
world use case for data scientists and engineers. While there
is potential to extend this approach to other data types (e.g.,
images), we focus exclusively on textual tabular data in our
study due to time constraints and the widespread adoption of
Pandas in industry workflows.

D. Model Evaluation

To benchmark the performance of various LLMs on data
engineering tasks, we evaluate three prominent models at
the time of this study: GPT-40-mini[25] from OpenAl,
Claude 3.5 Haiku[26] from Anthropic, and Gemini 2.0
Flash[27] from Google. These are all models from leading
LLM providers, have been used in prior work[28] |29, [30]
and have been demonstrated to show good performance in
code generation tasks. Although large models may achieve
higher absolute correctness, we focus on small models to better
reflect the cost constraints and deployment realities of actual
production environments.

We assess the code generated by these models through
execution-driven criteria, utilizing the following performance
metrics averaged over 3 runs:

1) BLEU3: Trigram overlap between generated code and
the ground truth, calculated on each step. This captures
the similarity in syntax between the generated code and
code from the oracle.

2) Output match: Proportion of generated outputs with an
exact match in table structure, column names, and data
values relative to the sample output. This metric captures
functional correctness, accounting for the possibility of
multiple valid solutions.

3) Performance: Elapsed runtime, peak memory and peak
CPU utilization. All notebooks are executed in a single
Kaggle process with the same hardware configuration of
4 virtual CPUs and 30GB of RAM. We use psutil to
measure peak CPU and tracemalloc for peak memory.
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Fig. 3: Correctness scores by LLM and benchmark
V. RESULTS

A. RQI: How do modern LLMs perform on the multi-step data
engineering code generation task?

To answer this research question, we evaluate the perfor-
mance of the LLMs in our study (GPT-40-mini, Claude-3.5-
Haiku and Gemini-2.0-Flash) on the ARCADE benchmarks
without any refinement (i.e. single notebook round and single
intent iteration).

1) Correctness: The results indicate that all LLMs evalu-
ated generate functionally correct and error-free code, albeit
with syntax that may be different than the ground truth code,
as indicated by the BLEU scores. The results also show that
Gemini-2.0-Flash consistently achievs superior performance.

On the ARCADE-Existing benchmark, Gemini-2.0-Flash
attained the highest BLEU-3 score (0.35), outperforming GPT-
4o0-mini (0.30) and Claude-3.5-Haiku (0.32). It also demon-
strated the strongest alignment with expected output formats
and values, with an Output Structure Match of 0.88 and Output
Data Match of 0.86. Furthermore, Gemini-2.0-Flash produced
the fewest errors (3%) on this benchmark, suggesting a high
level of reliability.



TABLE II: Comparison of average correctness scores across models and benchmarks. Best benchmark scores in bold.

Benchmark ARCADE-Existing ARCADE-New

Model GPT-40-mini  Claude-3.5-Haiku ~ Gemini-2.0-Flash ~ GPT-40-mini  Claude-3.5-Haiku =~ Gemini-2.0-Flash
BLEU-3 0.30 0.32 0.35 0.22 0.22 0.24
Output Structure Match (%) 0.84 0.80 0.88 0.52 0.56 0.69
Output Data Match (%) 0.85 0.77 0.86 0.49 0.51 0.66
Generated Error (%) 0.08 0.12 0.03 0.32 0.27 0.06
Generated Code Lines 5.70 4.74 5.05 7.88 7.61 8.94

Performance differences were more pronounced on the
more complex ARCADE-New benchmark. Gemini-2.0-Flash
again led with a BLEU-3 score of 0.24, compared to 0.22
for both GPT-40-mini and Claude. In addition, Gemini-2.0-
flash achieved a 0.69 Output Structure Match and a 0.66
Output Data Match, significantly higher than the other models.
Notably, the error rate of code generated by Gemini was 6%,
while GPT-40-mini and Claude exhibited substantially higher
error rates of 32% and 27%, respectively.

Initially, Gemini-2.0-Flash exhibited a tendency to repeat
code for each intent, inflating output length unnecessarily.
After fine tuning the prompts Gemini-2.0-Flash still generated
more lines of code on average on both benchmarks (e.g.
8.94 lines on ARCADE-New), however this verbosity did not
compromise correctness.

It is important to note that Gemini may have had greater
exposure to ARCADE data during pretraining, which could
have contributed to its performance advantage. We address
this concern in Section

Beyond aggregate scores, a key challenge in evaluating
LLMs on multi-step code generation is the high variability
in performance across individual notebooks. Figure [3] shows
that this variability is significantly greater for ARCADE-
New compared to ARCADE-Existing across all models. For
example, the proportion of intents with output data match
scores below 0.25 increases fourfold for GPT-40-mini, rising
from approximately 0.1 to 0.4.

2) Runtime Performance: Table shows the difference
in mean performance run time, peak memory, and peak CPU
utilization between the generated and original intent code after
removing intents with errors and after fine tuning the prompt
so that Gemini did not produce repeated code.

Overall, we find that all models generated more effi-
cient code than the original, demonstrating improvements in
runtime, memory usage, and peak CPU load across both
ARCADE-Existing and ARCADE-New benchmarks. How-
ever, aside from Claude’s 54.67% average runtime improve-
ment on ARCADE-New, these gains are not statistically sig-
nificant (P > 0.05). This is likely due to the wide variability
in tasks and datasets, as shown by the high standard deviations
in runtime, memory, and peak CPU differences.

B. RQ2: What types of issues do we see in the generated code?

To understand the limitations of LLM generated code, we
analyze cases in which LLM generated code deviates from

the ground truth, as determined by the output data score. One
of the authors performed this categorization through a multi-
step process that involved first describing the failure based on
the generated code, output and any runtime exceptions; then
grouping related descriptions together; and finally assigning
tags to them. We conduct this analysis at the notebook level,
due to the possibility of intents that follow a failed step being
dependent on the output of that step.

More specifically, we consider all intents (and associated
generated code) up to, and including, the first intent for which
an error is encountered or the output data score drops below
1.0. These cases are categorized into two types: Failure with
Error (60 instances), where the generated code leads to a
run-time error; and Failure without Error (167 instances, 50
sampled for analysis) where the code executes successfully
but produces an output that deviates from the ground truth, as
measured by the output structure score. Table [[V] summarizes
the issues related to Failure with Error and Failure without
Error. The following sections discuss each of these categories.

1) Failure with Error: In cases where the generated code
produces a runtime error, the most frequent issue is categorized
as Unsafe Operation. Accounting for 50% of this group of
errors, this category describes cases where the LLM-generated
code produces errors due to not correctly accounting for miss-
ing values (NaNs), incorrectly invoking a method, or makes
invalid assumptions about column value consistency based on
the limited data available in the prompt (10 rows in our study).
GPT-40-mini and Claude-3.5-Haiku are particularly prone to
this category of error (see Table[[V). The second most common
issue (18% of errors in this group) is Non-compliant LLM
Output, observed primarily in Claude. In these cases, the
model’s output does not conform to the expected code format,
resulting in syntax errors when running the parsed code. This
category of errors are likely caused by limited capacity for
instruction following rather than an outright failure to generate
accurate code. The Prompt Misinterpretation category (8%
of this group of errors) where the LLM misunderstands the
components of the prompt like generated code from previous
time steps and sample input data. This leads to cases where the
generated code attempts to repeat a non-idempotent operation
or uses the sample data passed as the input data for the
task (e.g., removing an already-dropped column), leading to
execution failures (Repeated Operation).

2) Failure without Error: In cases where the code executes
without raising an error, many failures are superficial (e.g.



TABLE III: Comparison of the difference between generated and original runtime performance after excluding errors (-ve
metric values mean generated code outperformed original). Statistically significant results highlighted in bold.

Benchmark ARCADE existing ARCADE new
Model GPT-40-mini  Claude-3.5-Haiku ~ Gemini-2.0-Flash ~ GPT-40o-mini =~ Claude-3.5-Haiku ~ Gemini-2.0-Flash
Execution Runtime Metrics
Mean original execution time (ms) 199.37 190.04 253.77 428.37 439.32 486.53
Mean diff execution time (ms) -116.67 -94.07 -151.42 -187.25 -240.17 -1.73
Std diff execution time (ms) 1780.78 1757.61 2256.26 2787.53 1987.13 4501.91
Execution time improvement (%) -58.52 -49.50 -59.67 -43.71 -54.67 -0.36
Execution time p value 0.26 0.37 0.24 0.27 0.04 0.99
Peak Memory Metrics
Mean original peak memory (MB) 4.89 3.28 5.08 7.51 7.51 9.08
Mean diff peak memory (MB) -1.31 -0.32 1.10 -2.74 -1.72 -3.20
Std diff peak memory (MB) 17.36 7.47 29.18 45.10 18.55 53.45
Peak memory improvement (%) -26.86 -9.76 21.62 -36.44 -22.93 -35.20
Peak memory p value 0.19 0.47 0.50 0.32 0.12 0.25
Peak CPU Metrics
Mean original peak cpu (%) 130.34 108.17 115.32 119.61 135.69 132.52
Mean diff peak cpu (%) -14.36 12.36 5.61 -17.55 -22.39 -6.25
Std diff peak cpu (%) 305.60 103.41 145.82 143.73 216.93 209.15
Peak cpu improvement (%) -11.02 11.43 4.87 -14.67 -16.50 -4.72
Peak cpu p value 0.51 0.10 0.53 0.08 0.11 0.60
TABLE IV: Issue Categories Across LLMs and Datasets
Issue Description Dataset GPT-40-| Claude-| Gemini- Total| %
mini|3.5-Haiku| 2.0-Flash
Failure with Error
. Cases where the generated code applies to data that it is unsuited for (for =~ ARCADE-Existing 3 3 1 7
Unsafe Operation example due to a type-mismatch), leading to an error ARCADE-New 10‘ 5‘ 3‘ 18‘50'00%
Non-Compliant LLM Cases where the LLM output does not meet output specification, causing ARCADE-Existing 0 7 0 7 18.00/%
Output syntax errors or parsing failures. ARCADE-New 0 1 1 21 ‘
Prompt Misinterpretation Cases where the LLM fails to recognize that it has done a non-idempotent ~ARCADE-Existing 0 2 0 2 3.00%
P P operation at a previous step, or misuses data passed in the prompt. ARCADE-New 1 1 0 2|
_— e — e . ARCADE-Existing 2 3 0 5
Other Other error-causing cases (e.g., syntax errors, missing imports). ARCADE-New 3‘ 2‘ 2‘ 7‘24.00%
Failure without Error
Correct Functionally correct solutions that differ from the reference in trivial ways, ARCADE-Existing 1 2 2 5 _
such as assigning a result to a variable instead of printing it directly. ARCADE-New 4 9 5 18 ¢
- . . . . S . ARCADE-Existing 1 1 1 3
Ambiguity Underspecified intents with multiple plausible interpretations. ARCADE-New 2‘ 3‘ 3‘ 8‘40.74%
Information Cases where the LLM-generated code makes assumptions about the nature =~ ARCADE-Existing 0 0 0 0 37.04%
Disadvantage of the data, leading to incorrect output following operations like filtering ARCADE-New 3 1 6 10777
. . Cases where the LLM generates code that misinterprets an intent. These are ARCADE-Existing 0 0 0 0
Task Misunderstanding deemed to be clear, in contrast with intents in the ambiguity’ category. ARCADE-New 2‘ 2‘ 2‘ 6‘22'22%

printing out the result of an operation rather than storing it
in a variable), as represented by the correct category. These
instances highlight limitations in the evaluation metric rather
than actual model failures and are not assigned any percentage
score in Table [Vl More substantial issues arise from Ambi-
guity in the intent, accounting for 40.74% of this category
of errors. The generated code in these cases represents a
plausible interpretation of the user intent, but does not match
the reference implementation. Another frequent issue involves
incorrect inference of input column data types, leading the
model to apply operations that are required by the infent
on a specified data type. We also identify failures stemming
from issues that we dub Information Disadvantage (37.04%

of this category of errors), where the model makes flawed
assumptions based on the limited data it observes, such as
applying filtering logic that fails to generalize due to an
incomplete view of column values. Finally, some errors are
caused by a clear Misunderstanding of the intent, where the
generated code reflects an incorrect or irrelevant interpretation
of the user’s instruction. These account for 22.22% of errors
in this category.

Across both categories, a common theme is the need to
generalize generated code to fit data that would be infeasible
to include in the LLMs context directly. Errors in the Prompt
Misinterpretation category occur later in the notebooks, after
multiple intents have been processed, suggesting potential dif-
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Fig. 4: Refinement correctness scores for Gemini-2.0-Flash on
ARCADE-New. Refinement seems to reduce error rate which
in turn improves output structure and data scores for increasing
(m) and (n).

ficulty with handling longer contexts. Techniques for manag-
ing context windows, especially for incrementally constructed
tasks involving both data and code, could be valuable. To
address ambiguity, it might be useful to prompt an LLM to
interpret an intent in different ways, allowing the user to make
a choice on what solution best fits their description, given the
inherent imprecision of natural language.

C. RQ3: Does increasing the amount of iterative refinement
improve correctness and performance?

To address this question, we employ an iferative refine-
ment process that allows the LLM being evaluated refine the
generated code at both the intent and notebook levels. We
then measure the impact that these refinements have on output
correctness and execution performance.

The iterative refinement process proceeds through m rounds
for each notebook. In every round, the LLM refines the code
generated for each intent n times. During each iferation, the
prompt is constructed using the prior execution context and
output. The system then generates new code, executes it to
produce an output, and appends both the code and its result
(we restrict this to 10 rows) to the prompt for the next iteration.
This process is visually represented in Figure

TABLE V: Output data score Mixed Linear Model regression
results for m by n experiments. Improvements in bold.

Coef. Std. Err. z p-value [0.025 0.975]
Intercept 0.722 0.027 26.468 0.000 0.669 0.775
m=2 -0.019 0.017 -1.112 0.266 -0.052 0.014
m=23 -0.008 0.017  -0.440 0.660 -0.041  0.026
n=2 0.007 0.017 0.384 0.701 -0.027  0.040
n=3 -0.000 0.017 -0.007 0.994 -0.034 0.033
m=2,n=2 0.029 0.024 1.223 0.221 -0.018 0.077
m=3n=2 -0.001 0.024  -0.022 0.982 -0.048 0.047
m=2,n=3 0.019 0.024 0.807 0.420 -0.028 0.067
m=3n=3 0013 0.024 0.537 0.591 -0.034  0.060
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Fig. 5: Refinement performance scores for Gemini-2.0-Flash
on ARCADE-New. Mean runtime and memory scores gener-
ally improve with more rounds (i) and iterations (n), but are
sensitive to outliers. Intents with errors are excluded.

Figures [] and [ show the correctness and runtime per-
formance of the generated code under different levels of
notebook (m) and user intent (n) refinement. We observe that
generated error tends to decrease as refinement increases (0.07
for m=n=1 vs 0.04 for m=n=3). We hypothesize this is due
to the LLM being able to correct previous errors which are
passed back as context during refinement. More error free code
in turn improves the output structure scores (up to 2% points)
and output data scores (up to 4% points). The BLEU-3 scores
remain relatively stable, suggesting that the refinement process
does not increase the semantic similarity of the code to the
ground truth. However, these results exhibit high variability
due to individual notebooks (see 95% confidence intervals).
Table shows the regression results of a Mixed Linear
Model for the same notebook intents under different m and n
treatments. The results indicate that despite the trend towards
improvement, these gains are not statistically significant. For
example, after adjusting for between-notebook variation, we
observe a 2.9% improvement in output data match scores
(0.029 regression coefficient) after 2 additional rounds (m=2)
or 2 additional iterations (n=2).

We observe, as represented in Figure [5] that increasing
iterations (n) tends to improve intent execution time and
memory use. However, adding a second notebook round (m)
reduces performance, while a third round brings it back to
baseline. This pattern suggests that while refinement has the
potential to improve performance, excessive notebook-level
refinement may introduce diminishing returns, highlighting the
need for a balanced approach.

We conclude that refinement tends to improve correctness
through the ability to fix code errors and also tends to improve
runtime performance. However, this is highly sensitive to
notebook variability, and further research is needed to identify
the point at which refinement is no longer beneficial.

VI. DISCUSSION
A. Further Experiments on Spider2-intents
To control for possible pretraining exposure to the AR-
CADE dataset (released in 2022), we validate our findings
on the manually constructed Spider2-intents dataset described
in Section This evaluation follow the same process
described in Section (Case Study). The results of this



evaluation are presented in Table We observe that LLM
performance is comparable between ARCADE and Spider2-
intents. Namely, comparing ARCADE-New to Spider2-intents
the best scores are: BLEU-3 of 0.24 vs 0.35, output structure
of 0.69 vs 0.74, data match of 0.66 vs 0.80, and the same
generated error of 0.06. Since ARCADE-New performance is
lower than that of Spider2-intents it implies data leakage is
not likely a significant factor in ARCADE results as Spider2-
intents has not been seen by LLMs and was designed with
similar task complexity in mind.

TABLE VI: Spider2-intents Evaluation Results

Model GPT-40- Claude- Gemini-
mini 3.5-Haiku  2.0-Flash
BLEU-3 0.34 0.33 0.35
Output Structure Match 0.58 0.60 0.74
Output Data Match 0.60 0.64 0.80
Generated Error 0.29 0.24 0.06
Generated Code Lines 3.55 4.69 4.26

B. Challenges with Complex ’Single-Step’ Tasks

In an additional experiment using the tasks collected from
the Spider 2.0-lite dataset, we found that while iterative
refinement improves performance over simple prompting by
up to 18% but overall performance remains low. [VII| shows the
results of this experiment, with Gemini-2.0-Flash* indicating
the performance of Gemini-2.0-Flash (the best performing
model in the zero-shot setting) after iterative refinement using
the optimal parameters for round(2) and iteration(1) as deter-
mined in RQ3. Compared to the results on Spider2-intents,
the average output data score is 79% lower, suggesting that
automated decomposition of complex tasks into simpler sub-
tasks could be a promising strategy for improving performance
on tasks with the level of complexity of those in Spider 2.0-
lite.

TABLE VII: LLM Performance on Spider 2.0-lite

Model GPT- Claude- Gemini- Gemini-
40-mini  3.5-Haiku  2.0-Flash 2.0-Flash*

Output Structure  0.43 0.14 0.51 0.51

Match

Output Data 0.11 0.06 0.15 0.17

Match

Generated Error 0.45 0.67 0.26 \ 0.16

VII. THREATS TO VALIDITY

Our study involves a number of assumptions and simpli-
fications made for practical reasons that may influence the
generalizability and correctness of our results.

o Execution Environment: We used Kaggle, a cloud
platform as our execution environment. To mitigate the
impact of the inherent variability of the execution en-
vironment on our results, the results reported here are
from an average of three notebook runs. However, we
acknowledge that it does not completely eliminate the
impact of environment variability on our results.

« Sampling for Qualitative Evaluation: Taking a limited
number of rows of output for correctness evaluation is
limited and sometimes generates false positives.

o Prompt Structure: We did not fully account for the
impact of our prompt structure on the performance of
the different models we experimented with. As models
are sensitive to prompt structure, this could affect the
validity and reproducibility of our results. In particular,
little model-specific prompt optimization was performed
which may have contributed to non-compliant outputs
observed for some models.

VIII. CONCLUSION

In this study, we performed an empirical study of how LLMs
perform on multi-step data engineering code generation tasks;
categorized the issues with the generated code, and evaluated
the impact of iterative refinement.

Our results reveal that modern LLMs are capable of generat-
ing code that satisfies user requirements, reaching output data
match scores of up to 80% on a newly created benchmark. In
terms of performance, the LLMs also showed trends toward
reduced runtime, memory, and cpu usage; however improve-
ments were not statistically significant.

The results of our issue categorization (on cases where the
LLM-generated code fails) reveal that limitations in data ex-
ploration hinder LLM performance, often leading to generated
code that does not sufficiently account for variations in the data
source, and that ambiguity remains a significant challenge.

Furthermore, our results demonstrate that iterative refine-
ment can improve correctness and runtime performance in
code generation tasks. Specifically, we find that the optimal
configuration involves a two rounds of notebook refinement
with two iterations per user intent resulting in 2.9% improve-
ment in output data match scores on average.

Based on the results of our study, we propose further
research into prompt optimization for different models, reward
signals for iterative refinement, and dynamic selection of
source data examples. Future work could also investigate
the performance overhead and cognitive demands that using
LLMs for this task places on developers, as well as develop
metrics to identify which data transformation tasks LLMs
are most effective at handling. Furthermore, given success on
Spider2-intents, future research could extend our methodology
to transform Spider 2.0 tasks to multi-step tasks and open up
a new avenue for solving this challenging benchmark.

REFERENCES

[1] Anaconda. State of Data Science: Al and Open Source
at Work. 2025. URL: https ://www. anaconda . com /
resources/report/state-of-data- science-report.

[2] Dong Huang et al. EffiBench: Benchmarking the Effi-
ciency of Automatically Generated Code. 2025. arXiv:
2402.02037 [cs.SE]L URL: https://arxiv.org/abs/2402.
02037,


https://www.anaconda.com/resources/report/state-of-data-science-report
https://www.anaconda.com/resources/report/state-of-data-science-report
https://arxiv.org/abs/2402.02037
https://arxiv.org/abs/2402.02037
https://arxiv.org/abs/2402.02037

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Sanidhya Vijayvargiya et al. Interactive Agents to Over-
come Ambiguity in Software Engineering. 2025. arXiv:
2502.13069 [cs.ATI].

T. Yu et al. “Spider: A Large-Scale Human-Labeled
Dataset for Complex and Cross-Domain Semantic
Parsing and Text-to-SQL Task”. In: arXiv preprint
arXiv:1809.08887 (2018).

Mohammadreza Pourreza and Davood Rafiei. “DIN-
SQL: Decomposed In-Context Learning of Text-to-SQL
with Self-Correction”. In: Advances in Neural Informa-
tion Processing Systems. Ed. by A. Oh et al. Vol. 36.
Curran Associates, Inc., 2023, pp. 36339-36348.

F. Lei et al. “Spider 2.0: Evaluating Language Models
on Real-World Enterprise Text-to-SQL Workflows”. In:
arXiv preprint arXiv:2411.07763 (2024).

Minghang Deng et al. “Reforce: A Text-to-SQL agent
with self-refinement, format restriction, and column
exploration”. In: ICLR 2025 Workshop: VerifAl: Al
Verification in the Wild. 2025.

Z. Hong et al. “Next-Generation Database Interfaces: A
Survey of LLM-based Text-to-SQL”. In: arXiv preprint
arXiv:2406.08426 (2024).

J. Li et al. “Can LLM Already Serve as a Database
Interface? A Big Bench for Large-Scale Database
Grounded Text-to-SQLs”. In: Advances in Neural In-
formation Processing Systems. Vol. 36. 2024.

J. Austin et al. “Program Synthesis with Large Lan-
guage Models”. In: arXiv preprint arXiv:2108.07732
(2021). URL: https://arxiv.org/abs/2108.07732.

N. Jain et al. “Jigsaw: Large Language Models Meet
Program Synthesis”. In: Proceedings of the 44th In-
ternational Conference on Software Engineering (ICSE
2022). 2022, pp. 219-230. por: |[10.1145/3510003 .
3510203.

D. Nam et al. “Predictive Synthesis of API-Centric
Code”. In: Proceedings of the 6th ACM SIGPLAN Inter-
national Symposium on Machine Programming (MAPS
2022). 2022, pp. 40-49. por: [10. 1145 /3520312 .
3534866.

L. Ma et al. “LLMs with User-Defined Prompts as
Generic Data Operators for Reliable Data Process-
ing”. In: 2023 IEEE International Conference on Big
Data (BigData). 2023, pp. 3144-3148. DoI1: |10.1109/
BigData59044.2023.10386472.

S. Schmidgall et al. “Agent Laboratory: Using LLM
Agents as Research Assistants”. In: arXiv preprint
arXiv:2501.04227 (2025).

C. Luet al. “The Al Scientist: Towards Fully Automated
Open-Ended Scientific Discovery”. In: arXiv preprint
arXiv:2408.06292 (2024).

A. Grosnit et al. “Large Language Models Orchestrat-
ing Structured Reasoning Achieve Kaggle Grandmaster
Level”. In: arXiv preprint arXiv:2411.03562 (2024).
URL: https://arxiv.org/abs/2411.03562.

Y. Lai et al. “DS-1000: A natural and reliable bench-
mark for data science code generation”. In: Inferna-
tional Conference on Machine Learning. 2022.
Pengcheng Yin et al. “Natural language to code gener-
ation in interactive data science notebooks”. In: arXiv
preprint arXiv:2212.09248 (2022).

Junjie Huang et al. “Execution-based evaluation for data
science code generation models”. In: arXiv preprint
arXiv:2211.09374 (2022).

Yeming Wen et al. “Grounding data science code
generation with input-output specifications”. In: arXiv
preprint arXiv:2402.08073 (2024).

T. T. Quoc et al. “An Empirical Study on Self-
Correcting Large Language Models for Data Science
Code Generation”. In: arXiv preprint arXiv:2408.15658
(2024). poI: 10.48550/arXiv.2408.15658|

Rajas Agashe, Srinivasan Iyer, and Luke Zettlemoyer.
“JulCe: A Large Scale Distantly Supervised Dataset
for Open Domain Context-based Code Generation”.
In: Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP). Ed. by Kentaro Inui
et al. Hong Kong, China: Association for Computational
Linguistics, Nov. 2019, pp. 5436-5446. DoI: |10.18653/
v1/D19-1546. URL: https://aclanthology.org/D19-1546/.
Greta Dolcetti et al. “Helping LLMs Improve Code
Generation Using Feedback from Testing and Static
Analysis”. In: Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security
(CCS). ACM, 2023. poI: 10.1145/3576915.3616413.
Eric Zelikman et al. “Self-taught optimizer (stop):
Recursively self-improving code generation”. In: First
Conference on Language Modeling. 2024.

OpenAl. GPT-4o-mini Model Overview. Accessed:
2025-06-28. 2024. URL: https://platform.openai.com/
docs/models/gpt-40-mini.

Anthropic. Claude 3.5 Haiku Model Card. Accessed:
2025-06-28. 2025. URL: https://www.anthropic.com/
claude/haiku.

Google DeepMind. Gemini 1.5 and Gemini Flash Mod-
els. Accessed: 2025-06-28. 2024. URL: https://cloud.
google . com / vertex - ai/ generative - ai/ docs / models /
gemini/2-0-flashl

Nathalia Nascimento et al. LLM4DS: Evaluating Large
Language Models for Data Science Code Generation.
2024. arXiv: 2411.11908 [cs.SE].

Jia Li et al. EvoCodeBench: An Evolving Code Genera-
tion Benchmark Aligned with Real-World Code Repos-
itories. 2024. arXiv: 2404.00599 [cs.CL].

Jiawei Guo et al. CodeEditorBench: Evaluating Code
Editing Capability of Large Language Models. 2025.
arXiv: 2404.03543 [cs.SE].


https://arxiv.org/abs/2502.13069
https://arxiv.org/abs/2108.07732
https://doi.org/10.1145/3510003.3510203
https://doi.org/10.1145/3510003.3510203
https://doi.org/10.1145/3520312.3534866
https://doi.org/10.1145/3520312.3534866
https://doi.org/10.1109/BigData59044.2023.10386472
https://doi.org/10.1109/BigData59044.2023.10386472
https://arxiv.org/abs/2411.03562
https://doi.org/10.48550/arXiv.2408.15658
https://doi.org/10.18653/v1/D19-1546
https://doi.org/10.18653/v1/D19-1546
https://aclanthology.org/D19-1546/
https://doi.org/10.1145/3576915.3616413
https://platform.openai.com/docs/models/gpt-4o-mini
https://platform.openai.com/docs/models/gpt-4o-mini
https://www.anthropic.com/claude/haiku
https://www.anthropic.com/claude/haiku
https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-0-flash
https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-0-flash
https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-0-flash
https://arxiv.org/abs/2411.11908
https://arxiv.org/abs/2404.00599
https://arxiv.org/abs/2404.03543

	Introduction
	Related works
	Terminology
	Case Study Setup
	Datasets
	ARCADE
	Spider2-intents (Derived Dataset)

	Prompt Structure
	Experimental Setting
	Model Evaluation

	Results
	RQ1: How do modern LLMs perform on the multi-step data engineering code generation task?
	Correctness
	Runtime Performance

	RQ2: What types of issues do we see in the generated code?
	Failure with Error
	Failure without Error

	RQ3: Does increasing the amount of iterative refinement improve correctness and performance?

	Discussion
	Further Experiments on Spider2-intents
	Challenges with Complex 'Single-Step' Tasks

	Threats to Validity
	Conclusion

