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Abstract
To comply with high productivity demands, software developers reuse free open-source soft-
ware (FOSS) code to avoid reinventing the wheel when incorporating software features. The
reliance on FOSS reuse has been shown to improve productivity and the quality of delivered
software; however, reusing FOSS comes at the risk of exposing software projects to public
vulnerabilities. Massacci and Pashchenko have explored this trade-off in the Java ecosys-
tem through the lens of technical leverage: the ratio of code borrowed from FOSS over the
code developed by project maintainers. In this paper, we replicate the work of Massacci and
Pashchenko and we expand the analysis to include level-1 transitive dependencies to study
technical leverage in the fastest-growing NPM ecosystem. We investigated 14,042 NPM
library releases and found that both opportunities and risks of technical leverage are mag-
nified in the NPM ecosystem. Small-medium libraries leverage 2.5x more code from FOSS
than their code, while large libraries leverage only 3% of FOSS code in their projects. Our
models indicate that technical leverage shortens the release cycle for small-medium libraries.
However, the risk of vulnerability exposure is 4-7x higher for libraries with high technical
leverage. We also expanded our replication study to include the first level of transitive depen-
dencies, and show that the results still hold, albeit with significant changes in themagnitude of
both opportunities and risks of technical leverage. Our results indicate the extremes of oppor-
tunities and risks in NPM, where high technical leverage enables fast releases but comes at
the cost of security risks.
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1 Introduction

Software ecosystems have transformed how we develop software. They enable developers
to publish their code as software libraries that can be easily leveraged by other software
developers. For example, the NPM ecosystem alone has more than 2.15M libraries that
JavaScript developers can use. The numerous free open-source software libraries facilitate
and encourage code reusability. By leveraging those libraries, developers avoid reinventing
the wheel (Grinter 1996), improve software quality (Mohagheghi et al. 2004; Basili et al.
1996; Abdellatif et al. 2020) and reduce time-to-market (Mohagheghi and Conradi 2007).

While leveraging FOSS libraries brings numerous opportunities for speeding up software
development, the risk of borrowing other developers’ code manifests in the form of bugs
and vulnerabilities. Prior work shows that vulnerabilities are a widespread problem in FOSS
libraries (Dashevskyi et al. 2018; Alfadel et al. 2021a, b).

Numerous security incidents point to vulnerable dependencies as the main culprit for the
security exploit. For example, an exploit in the vulnerability found in Apache Structs led to a
data breach of Equifax systems, leaking data of millions of American citizens and leading to
a cost of 1.8 billion US dollars in settlements and security upgrades (Luszcz 2018; Fruhlinger
2020). More recently, a vulnerability in the log4j library affected a plethora of services and
systems, including e-commerce websites overall the world (Neuburger et al. 2021; Yu et al.
2022).

To develop software efficiently, developers have to constantly deal with the trade-off of
the opportunities brought by reusing FOSS libraries versus the security risks of depending on
other people’s code. Recently, Massacci and Pashchenko (Massacci and Pashchenko 2021)
have modelled this trade-off using the notion of technical leverage. Technical leverage
expresses the ratio of a software project code that is borrowed from FOSS libraries over
the size of one’s own code. The authors investigate the opportunities and risks of technical
leverage in the Maven ecosystem (Java), reporting a clear trade-off: Leveraging FOSS code
(high technical leverage) can help projects ship more code without incurring large release
delays, however, projects with such high technical leverage are also 60% more likely to
become vulnerable than projects with low technical leverage.

The work of Massacci and Pashchenko (Massacci and Pashchenko 2021) has inspired us
to replicate their analysis on another major software ecosystem - the NPM ecosystem - for
the following reasons: 1) NPM is the package manager for Node JS libraries in JavaScript,
the most popular programming language among developers1, and is the largest and fastest
growing ecosystem to date. NPM has more than 2 million reusable packages (Libraries-the
open 2022; Latendresse et al. 2023) and has very distinct characteristics to theMaven ecosys-
tem. 2)Due to the minimalist JavaScript standard library, JavaScript developers tend to reuse
more FOSS components in their projects (high opportunity for technical leverage) (Decan
et al. 2018a; Zerouali et al. 2018). 3)

Vulnerabilities are very commonly found in NPM packages. Studies and industry reports
estimate that between 30% to 40% of all NPM packages rely on code with known vul-
nerabilities (high risk of technical leverage) (Hejderup 2015a; Sonatype 2020). 4) Studies
have frequently pointed to major differences across software ecosystems regarding software
reuse (Alfadel et al. 2021a; Decan et al. 2017; Bogart et al. 2021). Therefore, what are the

1 https://insights.stackoverflow.com/survey/2021
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differences between the opportunities and risks of technical leverage betweenMaven and the
NPM ecosystem?

In this study, we assess the opportunities and risks of technical leverage on popular pack-
ages of the NPM ecosystem. First, we focus on studying the direct technical leverage for
14,042 releases, by considering only the direct dependencies of libraries, thus disregarding
transitive dependencies to compare our results with Massacci and Pashchenko (Massacci
and Pashchenko 2021). Then, we expand on the replicated study to include an assessment of
the opportunities and risks of transitive dependencies, not initially included in the replicated
article. To keep the computational costs manageable, we included the first level of transitive
dependencies and report on the impact of its inclusion on all analysis performed byMassacci
and Pashchenko (Massacci and Pashchenko 2021).

Our study aims to answer the following research questions:

RQ1: Is there a difference in direct technical leverage, distance and direction of
changes between small-medium and large libraries? We analyze how small-medium
libraries(<10KLOC) and large libraries (≥10KLOC) leverage FOSS and their related main-
tenance activities over time. Our findings show that small-medium libraries tend to leverage
multiple times their code in FOSS (2.5x in median), while large libraries leverage only 3% of
their code base in FOSS. When we look at the evolution of these libraries, results show that
small-medium libraries constantly adopt new dependencies across releases, while developers
of large libraries mostly work on their own code. While similar results were found in the
Maven ecosystem (Massacci and Pashchenko 2021), we find that, contrary to our beliefs,
NPM libraries have lower direct technical leverage than Maven libraries.

RQ2: How does direct technical leverage impact the time interval between library
releases? We build a multivariate linear regression model to capture how direct technical
leverage is associated with the time interval between library releases. Our results confirm our
intuition: High direct technical leverage has a positive association with faster release cycles
for small-medium libraries. The positive effect was considerably higher in NPM libraries
than the effect reported forMaven libraries in the replicated study (Massacci and Pashchenko
2021). However, technical leverage has no significant effect on large libraries’ release cycles.

RQ3: Does direct technical leverage impact the risk of including more vulnerabilities? We
explore the relation between direct technical leverage and risks in terms of vulnerabilities.
Therefore, we use the Odds Ratio (OR) to quantify the risk of high direct technical leverage
on libraries. We find that high direct technical leverage brings high risks. In particular, small-
medium libraries have 4 times more chances of being vulnerable if they have high technical
leverage. In large libraries, high technical leverage increases the risk of vulnerability to 7 folds.
In the Maven ecosystem, small-medium libraries have 1.6 higher odds of being vulnerable
in comparison to the large libraries with OR = 0.43 (Massacci and Pashchenko 2021).

RQ4: To what extent do the findings about the technical leverage observed for direct
dependencies hold for level-1 transitive dependencies? We complement our study by
investigating the first level of transitive dependencies to understand its impact on the dif-
ference in technical leverage between small-medium and large libraries, the time interval
between library releases, and the risk of including more vulnerabilities.

Results show similar opportunities and risks, compared to considering only direct depen-
dencies, but with a significant change in the magnitude of both benefits and downsides.
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Expectedly, adding the first level of transitive dependencies in the analysis increases signifi-
cantly the technical leverage. In particular, the technical leverage of a small-medium library
rose from 2.5 to 7.7 times their own code in FOSS. As a consequence of this increase in
technical leverage, the risks of vulnerabilities also saw a substantial increase. When includ-
ing the first level of transitive dependencies, the risks of being affected by vulnerabilities in
small-medium libraries with high technical leverage increase from 4 to 6.7 times, compared
to libraries with low technical leverage. This expanded analysis strongly suggested that tran-
sitive dependencies have the potential to substantially increase both opportunities (amount
of code borrowed) and risks (vulnerabilities) of technical leverage.

In summary, our study delved into three key research questions by scrutinizing the
opportunities and risks associated with the direct dependencies of 142 libraries, spanning
across a comprehensive dataset of 14,042 releases. This methodological choice was made to
uphold the comparability of our findings with those of the replicated study. Subsequently,
we extended upon the replicated study by incorporating a broader assessment that encom-
passed level-1 transitive dependencies, a facet not explored in the initial replication. We then
present an in-depth analysis of the implications stemming from the inclusion of level-1 tran-
sitive dependencies in all conducted analyses. Table 1 highlights both the similarities and
distinctions between our study and the replicated study.

Our study contributes to the research community and practitioners on three fronts:

– To the best of our knowledge, we present the first replication study that evaluates the
technical leverage in the NPM ecosystem. We empirically investigated 14,042 NPM
library releases to explore the opportunities and risks of direct technical leverage.

– We compare our findings with the Maven ecosystem to understand the similarities and
differences of opportunities and risks across both ecosystems. Hence. our study helps
build a comprehensive body of knowledge on technical leverage in software development.

– We complement the replicated study by including a novel analysis considering the first
level of transitive dependencies. Transitive dependencies can have significant impact on
project development, and constitute the largest share of dependencies. This expanded
analysis help us establish a more realistic view about the benefits and downsides of the
technical leverage.

– Wemake our dataset publicly available to foment more research in this area (Anonymous
2022). Our dataset is carefully mined and curated, comprising 14,042 stable releases
containing metadata about library size, technical leverage, and vulnerability reports.

Ourfindings shed the light on the importance of developers’ choices of third-party libraries,
since such dependencies are amixed blessing. Thismeans that reusing other developers’ code
is an opportunity to increase productivity to an extent, but comes at higher odds of exposing
software projects to serious vulnerabilities.

Table 1 Unveiling the similarities and differences between our work and the replicated study

RQ1.Leveraging RQ2.Benefits RQ3.Risks RQ4.Transitive
deps

Dataset Size
(packages/
releases)

Replicated study � � � ✗ (200/8,494)

Our study � � � � (142/14,042)
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Paper Organization The paper is organized as follows. Section 2 explains the background
and defines the terminology used throughout the study. Section 3 describes the case study
setup, including the process of collecting and curating our data. In Section 4, we dive into
our study by answering the four research questions. The implications of our results to the
community are elaborated in Section 5. We present the related work in Section 6. We state
the threats to validity and limitations to our study in Section 7. Finally, Section 8 concludes
our paper.

2 Background

In this section, we discuss the metrics and terminology used throughout the paper. Technical
leverage (Section 2.1) expresses how much of the project’s code is borrowed from FOSS,
and the evolution metrics (Section 2.2) showcase how projects have evolved with regard to
FOSS usage and maintenance.

2.1 Direct Technical Leverage

The technical leverage is defined as the ratio between the total size of code borrowed from
dependencies (both direct and transitive) and the standard libraries, over the size of the
project’s code. As a replication study, we opt to conduct our study on direct technical lever-
age. The direct technical leverage (λdir) is a simplified version of the technical leverage
that only considers the code borrowed from direct dependencies from third-party libraries.
Hence, we exclude from our analyses code borrowed from the standard library and transitive
dependencies. There are multiple reasons as to why we decided to focus on direct technical
leverage: First, to make our results comparable to the replicated study as the authors also
report on the direct technical leverage. Second, related work shows that transitive depen-
dencies artificially inflate the problem of vulnerabilities, as transitive dependencies are more
abundant than direct dependencies and most vulnerabilities in transitive dependencies do not
impact the software projects (Kula et al. 2018; Lauinger et al. 2018;Massacci and Pashchenko
2021; Pashchenko et al. 2018). Third, vulnerabilities in direct dependencies can be mitigated
by developers, as there is potential for deliberate choice of selecting a new vulnerable direct
dependency or keeping vulnerable dependencies outdated (Pashchenko et al. 2020).

λdir = Ldir

Lown
(1)

size of direct dependencies

size of own code

Where Ldir (dependency code size) represents the sum of the lines of third-party direct
dependencies code. Lown (own code size) is the number of own lines of code in the files of a
library, excluding the test files.

2.2 EvolutionMetrics

The technical leverage metric helps us understand how much of the project code is borrowed
from FOSS in a snapshot of a project. However, if we want to investigate the evolution
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of FOSS usage and maintenance over time, we need to introduce the following evolution
metrics: change distance and change direction (Massacci and Pashchenko 2021).

Change distance (ρ) The change distance characterizes the amount of a change in the code
size between two consecutive library releases r0 and r1. In other words, it quantifies the
impact of code changes on the library releases time using the following equation:

ρ =
√

�L2
own + �L2

dir (2)

�Ldir = Ldir(r1) − Ldir(r0)

�Lown = Lown(r1) − Lown(r0)

Change direction (θ ) The change direction characterizes the evolution type of a library
between two consecutive releases r0 and r1 by quantifying how developers change their own
code and their dependencies using the following equation:

θ = arccos

(
�Ldir

ρ

)
∗

{
+1 if �Lown > 0

−1 if �Lown ≤ 0
(3)

�Ldir = Ldir(r1) − Ldir(r0)

change distance

Figure 1 illustrates the change direction (θ ) on a coordinate plane. The x-axis and y-axis of
a plane represent the change size of own code and dependency code, respectively. The change
direction (θ ) captures the polar coordinates of the changes in the plane between the own and
dependency code sizes as shown in Fig. 1. This coordinate plane elaborates the strategies
used by developers to evolve their libraries, such as adding/removing dependencies. The

Fig. 1 Representation of the library change types according to the metrics of change distance (ρ) and change
direction (θ ), proposed by the replicated study (Massacci and Pashchenko 2021)
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following change directions illustrate the basic concepts of different types of library evolution
as depicted in Fig. 1:

– If θ ≈ 0°, means, developers increase the size of library dependencies, but do not change
their library own size, � Ldir > 0 and � Lown → 0.

– If θ ≈ 90°, means, developers do not change the library dependency size, but increase
their library own code size, � Ldir → 0 and � Lown > 0.

– If θ ≈ 180°, means, developers decrease the library dependency size, but do not change
their library own code size, � Ldir < 0 and � Lown → 0.

– If θ ≈ 270°, means, developers decrease the library’s own code size, but do not change
their library dependency size, � Ldir → 0 and � Lown < 0.

A combination of these library evolution directions (θ ) captures every library change. For
example, if θ ∈ (0◦, 90◦) for a library, this means that developers adopt new dependencies
and at the same time change the library own code (i.e., make some development).

3 Case Study Setup

Themain goal of this paper is to study how technical leverage is associated with opportunities
for faster release cycles and risks of security vulnerabilities. In this section, we describe the
data collection used in the rest of our study (Section 3.1), explain the calculation of NPM
libraries and their respective releases sizes (Section 3.3), and the collection of their associated
vulnerability reports (Section 3.4).

3.1 Collecting NPM Libraries

We aim to conduct our study on very popular NPM libraries, as these libraries tend to be well-
maintained and have the tendency to impact the ecosystem at large (Zerouali et al. 2019a;
Abdalkareem et al. 2020; Zapata et al. 2018; Møller et al. 2020; Nielsen et al. 2021). We start
our methodology by collecting NPM libraries using the libraries.io database (Nesbitt and
Nickolls 2017; Libraries-the open 2022). The libraries.io is an open source repository and
dependency database that catalogues libraries of the most popular ecosystems (e.g., NPM),
and it has been used by previous work as a source of library metadata (Zerouali et al. 2019b;
Decan et al. 2019, 2018b; Husain et al. 2019). To identify themost popular packages in NPM,
we select the libraries with the highest number of dependent packages as a proxy of library
popularity, similarly as done in prior work (Zapata et al. 2018; Zimmermann et al. 2019;
Zerouali et al. 2019b). To compare our results with the ones in the replicated study (Massacci
and Pashchenko 2021), we select a number of libraries that would yield a comparable number
of library releases. The replicated study investigated 200 Java libraries accounting for 8,464
library releases. However, NPM packages have a higher frequency of releases compared to
Maven libraries (Imtiaz et al. 2021; Libraries-the open 2022). Therefore, we select the most
popular 142 libraries, which yields a total of 24,820 library releases.

We opted for a smaller dataset of libraries primarily due to the substantially higher release
frequency observed within the NPM ecosystem. This approach (1) allows us to focus more
closely on the trends and patterns utilized by developers within individual libraries, thereby
facilitating a deeper understanding of their usage and impact, (2) enables us to establish
comparable conditions with the replicated work. While the replicated study features 40%
more packages than the 142 in our dataset as elaborated in Table 2, the number of filtered
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Table 2 Descriptive statistics of Maven (from the study of Massacci and Pachenko (Massacci and Pashchenko
2021)) and the selected NPM libraries of our study

Maven Libraries Item Mean Min Median Max

All # Versions per library 55 1 35 248

# Direct dependencies 4 0 2 51

Lown (KLOC) 37 2 15 350

Ldir (KLOC) 591 0 302 4,489

NPM Libraries Item Mean Min Median Max

All # Versions per library 100 9 67 432

# Direct dependencies 7 0 3 83

Lown (LOC) 10,380 10 2,042 204,985

Ldir (LOC) 20,608 0 596 715,849

# Level-1 trans. dep. 16 0 4 320

Llevel-1 trans. dep. (LOC) 20,744 0 1,245 422,606

Release interval (days) 23 0 6 1,716

# Files 112 1 15 34,543

# Functions 1,402 1 214 228,850

Small-medium # Direct dependencies 7 0 3 83

Lown(LOC) 2,123 10 948 9,991

Ldir(LOC) 11,893 0 2,428 393,508

# Level-1 trans. dep. 18 0 5 320

Llevel-1 trans. dep. (LOC) 23,473 0 1,835 422,606

# Files 39 1 10 34,543

# Functions 446 1 94 228,850

Large # Direct dependencies 7 0 1 48

Lown(LOC) 31,963 10,016 21,513 204,985

Ldir(LOC) 20,608 0 596 715,849

# Level-1 trans. dep. 11 0 1 111

Llevel-1 trans. dep. (LOC) 13,652 0 184 127,301

# Files 303 1 97 6,677

# Functions 3,889 1 3,150 35,651

In the NPM libraries, we consider a 10KLOC threshold to differentiate small-to-medium-sized libraries from
large-sized libraries

releases in our dataset is 66% higher than in the replicated study. Thus, we decided to select
fewer packages to keep the analysis more manageable. Moreover, if we had included more
packages, we would have significantly increased the number of transitive dependencies,
making it impossible to conduct the carried analysis.

In our study, we also want to evaluate how technical leverage is associated with the release
cycle of a library. Hence, we need to establish a mature linear evolution of libraries based on
their release. To achieve this, we filter out experimental releases, which are unstable releases
discouraged from being reused by the community. We use a regular expression to exclude
experimental releases if they are tagged as ‘experimental’. Moreover, we exclude backport
releases by organizing releases in chronological order according to their release timestamps.
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Subsequently, we developed a script to automate the detection of backports, filtering out
those versions from consideration based on their timing order. To enhance accuracy, we
utilized Semantic Versioning (SemVer) to validate whether a version qualifies as a backport,
considering scenarios where changes from a higher minor or patch version are applied to a
lower one. For instance, consider a software project following Semantic Versioning (SemVer)
with the following release history:

– v1.3.0 (released on 2024-01-01)
– v1.3.1 (released on 2024-01-15)
– v1.2.3 (released on 2024-02-01)

In this example, v1.2.3 was released after v1.3.1. Using SemVer, we determined that
v1.2.3 qualifies as a backport since its changes pertain to the v1.2.x branch, even though
a more recent minor version, v1.3.x, exists. Our script verifies this by cross-referencing
release timestamps and version identifiers, confirming that v1.2.3 introduces fixes or updates
backported from higher versions (e.g., v1.3.x).

The result of this filtering is a final set that includes 14,042 library releases. Table 2 provides
comprehensive statistics for the 142 selected NPM libraries. It includes descriptive statistics
for two distinct subgroups of releases (small-medium and large) after excluding backport
and experimental releases. The table also presents key metrics related to the number of files
and functions in the releases, along with information on level-1 transitive dependencies. We
observe that the selected libraries have numerous releases (median of 67), a low number of
direct and level-1 transitive dependencies (median of 3 and 4 respectively), and are typically
smaller in size (2,042 LOC). Furthermore, the large libraries exhibit a substantial difference
in scale compared to small-medium libraries, with approximately 10 times more files and 33
times more functions. In our examination of small-medium and large libraries, we discovered
that small-medium libraries account for 10,154 releases, while large libraries have 3,888
releases. Additionally, it is evident that small-medium libraries exhibit three times more
direct dependencies and five times more level-1 transitive dependencies compared to large
libraries. Our dataset includes themost dependent upon libraries in NPM, such as eslint (280k
dependents), mocha (236k dependents), and lodash (150k dependents).

In the replicated study, the authors started from the top 200 FOSS Maven-based libraries
used by a large software manufacturer across over 500 Java projects. The resulting set
corresponds to 8,464 library versions, which in turn include widely used libraries. In our
case, we selected the most popular 142 libraries, which yields a total of 14,042 library
releases, after filtering. NPM packages have a higher frequency of releases compared to
Maven libraries (Imtiaz et al. 2021), for example, the statistics in Table 2 showed that the
median number of package releases in NPM is 67 which is about 1.9 times the number of
package releases reported in the dataset of maven. Both datasets showed that the median
number of direct dependencies are 3 (npm) and 2 (maven). And the median size of the own
code is about 7 times larger in maven.This information could potentially impact the techni-
cal leverage. For instance, the median size of code being larger in Maven libraries suggests
potentially more comprehensive or complex libraries. This could impact technical leverage
by offering more functionality out-of-the-box, potentially reducing the need for custom code
development. Moreover, the Maven study opted for a threshold of 100KLOC to differentiate
between small-medium size libraries and large size libraries. We acknowledge that varying
thresholds could yield different outcomes. Thus, we investigated alternative thresholds (i.e.,
5, 10, 15, and 20 KLOC) and observed that our final findings remain consistent across these
different thresholds.
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3.2 Collecting and Resolving Direct and Level-1 Transitive Dependencies

In this section, we describe how we automate the dependency collection and resolution
mechanism. The algorithm starts by collecting the direct dependencies specified in a specific
package’s configuration file (e.g., package.json). Then, for each direct dependency, the algo-
rithm queries the npm registry to obtain information about the available historical versions
and their dependencies. After that, the algorithm iterates through the historical versions of the
direct dependency starting from the first created version and stopping at the version (target)
created or modified closest to the specified package time. During this iteration, the algorithm
checks if the target version satisfies the semantic version of the non-resolved version, using
semver.js library. If a satisfying version is found, it updates the resolved version with the
target version. For each resolved direct dependency, the algorithm repeats the process recur-
sively for their level-1 transitive dependencies. Our process ensures that our dependencies
are resolved as if they were installed at the time of the release of the library project, minimiz-
ing the chances of inaccuracies caused by simple reachability analysis algorithms (Liu et al.
2022). For example, if we have a package webpack@0.4.1 created at 14-05-2012 and one of
its direct dependencies is ’esprima’, the algorithm iterates through the historical versions of
the dependency (esprima) , starting from the first created version and stopping at the version
(target) created or modified closest to the specified package time (webpack@0.4.1). During
this iteration, the algorithm checks if the target version satisfies the semantic version of the
non-resolved version, using semver.js library. The non-resolved version collected from the
package.json of the package (webpack@0.4.1). If a satisfying version is found, it updates
the resolved version with the target version.

3.3 Calculating the Size of Libraries and their Dependencies

To compute the direct technical leverage, we calculate the library’s own size and the sum
of all its direct dependencies’ size metrics. We measure the size in lines of code using the
CLOC tool2. CLOC is a utility program that helps us count the size of a library or dependency
without accounting for comments and blank lines.

As direct technical leverage focuses only on the size of the actual source code of a library,
we exclude test files from our analysis, for both own and dependency code, by configuring
CLOC using the –exclude-dir parameter. We depend on the common and recommended
structure for a JavaScript package which often follows a modular approach to remove all
test directories. To eliminate testing code, we systematically removed directories named test,
tests, testing, __test __, or spec by configuring CLOC using the –exclude-dir parameter,
as well as files named test.js, tests.js, testing.js, test-*.js, *-test.js, or *.spec.js. To calculate
the size of library dependencies, we compute the size of each dependency using the CLOC
tool and then sum the resulting number of lines of code. It is important to note that we
only count JavaScript lines and exclude all other programming language’s lines for the own
and dependency code. We employ the same process to calculate the size of all releases and
their dependencies described in Section 3.1. Table 2 shows the statistics of lines of code
of the library and their respective dependencies in our dataset. We notice that the size of
dependencies (Ldir) is larger than the size of library’s own code (Lown). This shows that, on
median, the most depended upon NPM libraries leverage more than their own code in FOSS.

2 https://github.com/AlDanial/cLOC
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3.4 CollectingVulnerability Data

To study the risks as a byproduct of direct technical leverage, we measure the number of
vulnerabilities reported in the library’s own code versus the vulnerabilities reported on their
respective direct dependencies.

For this purpose, we mine the Snyk database (Snyk vulnerability 2023). Snyk is an open
source security platform for finding out vulnerabilities in different ecosystems (e.g., NPM,
Maven, PyPI, and Go) and has been used in prior work to identify whether the code of a
library is affected by vulnerabilities (Massacci and Pashchenko 2021; Chinthanet et al. 2021;
Zerouali et al. 2019a). We collected 3,176 vulnerabilities on the NPM libraries and their
dependencies on the 1st September 2021. An example of the information collected for each
vulnerability is shown in Table 3.

Figure 2 presents the percentage of releases in our dataset associated with vulnerabilities
for both own code and dependencies code. From the figure,we observe that 28%of our dataset
has at least one vulnerability stemming from direct dependencies and only 4% coming from
native code developed by project maintainers. Moreover, the figure shows that the percentage
of releases suffered from at least one vulnerability is always higher in direct dependencies
compared to ones coming from own code.

4 Case Study Results

In this section, we present the findings of our study with respect to our research questions.
For each research question, we present the motivation for the question, describe the approach
used to answer it, and discuss the results of our analysis.

4.1 RQ1: Is there a Difference in Direct Technical Leverage, Distance and Direction
of Changes Between Small-Medium and Large Libraries

Motivation The NPM ecosystem is the fastest growing ecosystem to date, with more than
2.15 million libraries available for the community. Thus, we expect the NPM ecosystem to
have a higher degree of direct technical leverage than reported in the Maven study of Mas-
sacci and Pashchenko (Massacci and Pashchenko 2021). Therefore, in this RQ, we examine
the direct technical leverage, distance, and direction of changes for small-medium and large
libraries (Massacci and Pashchenko 2021) in the NPM ecosystem. This enables us to under-
stand the different strategies that developers use to evolve and maintain their libraries based
on the library size.

Approach We first divide our dataset into small-medium and large library releases. To
achieve this, we choose the third quantile (i.e., Q75) of our sample distribution as a threshold,

Table 3 Example of the collected
metadata for vulnerabilities

Metadata Value

Vulnerability Name Command Injection

Affected Packages Codecov

Affected Versions < 3.7.1

Severity Medium

Published Date 21 Jul, 2020

123



   96 Page 12 of 35 Empirical Software Engineering            (2025) 30:96 

Fig. 2 Distribution of releases with reported vulnerabilities from their own code and dependencies in our
dataset

which is equivalent to 10KLOC, to split the dataset into small-medium (<10KLOC) and large
library (≥10KLOC) releases. Then, we compute the direct technical leverage (λdir) on both
small-medium and large library releases and compare their distributions.

To evaluate how developers change their code for small-medium and large libraries, we
compute the change distance (ρ) and change direction (θ ) metrics for both sets. As these
metrics are computed across releases, for each release r1 in our dataset, we use the closest
previous release as r0 to calculate them as described in Section 2.2. Then we use the kernel
density estimation (KDE) to plot the distribution of change direction in both sets. KDE is
closely related to histograms but can be favoured with properties such as smoothness or
continuity by using an appropriate kernel.

Results Table 4 shows the descriptive statistics of the code metrics used to measure the
evolution of one’s own code and third-party code into a software library. Small-medium
library releases leverage, on median, 253% (2.5 times) of their own code in FOSS, while
large library releases leverage only 3% of their code as in FOSS. In other words, developers
widely adopt dependencies, especially for small-medium libraries, as using dependencies
may help small libraries grow quickly in their code and reduce their development effort and
time (Grinter 1996; Mohagheghi and Conradi 2007).

To better understand the relation between the own code size of the libraries (small-medium
and large) and the direct technical leverage, we present Fig. 3. In this figure, we present all the
14,042 library releases that fall in the two-dimensional space of technical leverage (y-axis)
and their library size (x-axis). From the figure, we observe that releases that ship more own’s

Table 4 Descriptive statistics of the metrics

Item Mean Min Q25% Median Q75% Max

λdir_small-med-lib 36 0 0.163 2.53 17 7,709

λdir_large-lib 1.2 0 0.005 0.034 0.64 58

ρ(LoC) 2,096 0 2 25 249 647,106

θ(◦) 1.5 -180 -90 0.5 90 180
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Fig. 3 The direct technical leverage of 14,042 library releases per library size in LOC

code (right part of the graph) also leverage proportionally less code from dependencies.
Naturally, as direct technical leverage considers the size of a project, the larger the size of its
own code, the smaller the likelihood of high technical leverage. We confirm this observation
by calculating the Spearman Rank Correlation Coefficient (Zar 2005) and finding a negative
linear correlation between direct technical leverage and the size of own code (ρ = -0.466; p-
value =0). This means that releases that include a higher proportion of proprietary code tend
to rely proportionally less on external dependencies. Moreover, the p-value suggests that the
observed negative correlation is statistically significant. Furthermore, we calculated Cohen’s
d (Effect size cohen 2024) to quantify the effect size, resulting in a Cohen’s d value of 0.76.
This indicates a large association between direct technical leverage and the size of own code.

Still, it is interesting to observe that the leverage of dependencies is not proportional to
the size of own’s code, as it may indicate a limit to the usefulness of technical leverage as
libraries grow.

Regarding the differences in the type of changes developers perform in their code between
small-medium and large libraries, we report on the distribution of change direction across all
14,042 releases. Figures 4a and 4b present the KDE plots for change direction(θ ) of small-
medium and large libraries, respectively. A peak in the KDE distribution plots is proportional
to the frequency of a type of change across all releases in the dataset. From the figures, we
observe that developers experience different strategies for updating their small-medium and
large libraries. In small-medium libraries, developers frequently work in both their own code
and adopting new dependencies. Figure 4a suggests that small-medium library developers
focus first increasing and decreasing their own code (θ = 90°and θ = 270°), but also frequently
include more dependencies in their code-base (θ = 0°). This finding indicates that small-
medium library developers constantly resort to adding new dependencies to incorporate

Fig. 4 Kernel density estimation (KDE) plot with the distribution of the change direction of library releases
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more features and reduce development time (Grinter 1996; Mohagheghi and Conradi 2007).
On the other hand, in large libraries, developers tend to mostly work on their own code. This
is clearly shown in Fig. 4b where the KDE plot for θ = 0°has a much smaller curve compared
to θ = 90°. In other words, developers of large libraries focus on developing/optimizing their
code more than using dependencies, compared to small-medium libraries. Moreover, they
focus on fixing bugs and vulnerabilities in order to ship healthy libraries to the user.

Comparison to the Maven Eecosystem The replicated study observed similar findings
in the Maven ecosystem. Small-medium library releases leverage much more code from
dependencies (14.6) than large library releases (0.4) in Java. As a consequence, developers
of small-medium libraries frequently work on both their own code and their dependencies,
while developers of large librariesworkmostly in their own code-base. Surprisingly, however,
the direct leverage of NPM libraries is considerably much smaller than in Maven libraries.
We found that small-medium libraries have a median technical leverage of 2.5 versus 14.6
reported by the replicated study in Java small libraries. Contrary to our assumption, NPM
libraries have lower technical leverage than Maven libraries.

The differences in the technical leverage between Maven and npm may be due to distinct
factors. One major factor is the differences in average library sizes. (1) The statistical data
from the Maven and npm datasets, as presented in Table 2, reveals that the median size of
both own code and dependency code is notably larger in Maven. (2) Java programs tend
to use a wider vocabulary (Abdalkareem and Abboud 2021) and the structure of the Java
language is more verbose (Flauzino et al. 2018). Java code tends to have more words due to
its static typing and compile-time checks; thus developers may need to write more code to
accomplish certain tasks compared to dynamically typed languages (i.e., JavaScript) where
the language itself handles type inference. And this is reflected in the size of the library. (3)
Additionally, the differences in themodule system could contribute to the variations in library
size. Java has a module system introduced in Java 9 (Java Platform Module System), which
allows for more modular projects and thus larger libraries. On the other hand, Node.js has a
built-in CommonJSmodule system and supports ECMAScript modules (ESM) since Node.js
12. ESM allows for more granular control over dependencies and can help reduce project
size by only importing what is necessary (Turcotte et al. 2022). Overall, other characteristics
may also impact, as previous studies (Decan et al. 2019; Kikas et al. 2017) have shown
that ecosystems differ in their evolution. In the same context, developer behaviors, including
coding practices, project size preferences, and risk perceptions, may vary between NPM and
Maven communities, impacting their reliance on external dependencies and the scale of code
leverage.

Key Takeaway: Small-medium libraries leverage 2.5 times more code (in median)
from dependencies where developers frequently working in adopting more depen-
dencies. In comparison, within the Maven ecosystem, the median direct leverage of
dependencies is around 14.65. Large libraries rely on only 3% of their code from
dependencies, in contrast toMaven’s 48%.Despite the variance, developers primarily
engage with their own code bases in both contexts. In conclusion, both studies indi-
cate that small to medium-sized library releases leverage significantly more on code
from dependencies compared to larger library releases. Surprisingly, NPM libraries
have considerably lower direct technical leverage than Maven libraries.
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4.2 RQ2: How does Direct Technical Leverage Impact the Time Interval between
Library Releases

Motivation In RQ1, we found that small-medium libraries leverage more than twice their
code from dependencies. Prior work shows that software developers reuse code to reduce
time-to-market and increase their productivity (Lim 1994; Decan et al. 2018a; Zerouali et al.
2018). In thisRQ,wewant to better understand the relation between technical leverage and the
speed of releasing libraries. In particular,we assess the associated impact of technical leverage
on the release cycle in the NPM ecosystem. Understanding the opportunities associated
with technical leverage helps library developers balance between the opportunities and risks
associated with technical leverage based on their library needs.

Approach Following the replicated study, we build a multivariate linear regression model
to capture the impact of direct technical leverage, change distance, and change direction
on the time interval between library releases (Anderson 1962). Take the release interval
�x = rx − rx−1, calculated using two consecutive releases rx and rx−1, the model captures
the association between the release interval�x andmultiple metrics (e.g., technical leverage)
as follows:

log(�x + 1) = 1 + log(�x−1 + 1) + log(λdir) +
log(ρ) + cos(θ − 45o) + sin(θ)︸ ︷︷ ︸

Release cycle Previous release cycle
Technical
leverage

Amount of change
(change distance) Direction of changes: total + own

We describe each independent variable in our regression function as follows:

1. Previous release cycle. We include the previous release cycle to capture the effect of
release practices used by developers (i.e., daily, weekly release) in the dependent variable.
As releases can be published on the same day (i.e., release cycle of zero days), it is
necessary to increment +1 to keep a valid computation under a log function.

2. Technical leverage. This is the main variable of our study, as we want to identify the
associated impact on technical leverage to the release interval cycle.

3. Amount of changes.We use the log of the change distance log(ρ) to capture the amount
of changes (both in own code and dependencies) between releases. Intuitively, releases
with many changes tend to take longer to be released.

4. Direction of changes (total code). To consider the direction of changes in the total code
size, we use the term cos(θ − 45). Referring to Fig. 1, one might notice that there is a
diagonal line from θ = -45°to θ = 135°. This line separates the behaviour of increasing
total code base from the behaviour of decreasing total code base. By shifting the angle in
45°, we capture the direction of the change in total code size by using the cosine function.

5. Direction of changes (own code). It is also necessary to differentiate between total code
changes and changes in one’s own code base, as the latter tends to impact the release cycle
more substantially. To capture this phenomenon, we use the sin(θ) function to capture
the ratio of changes performed in one own’s code (�own).
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We employ a logarithmic scale for the release cycle and technical leverage metrics to
effectively represent their pronounced long-tail distributions, as illustrated in Fig. 5. Also,
we apply the regressionmodel on all releases in our datasets described in Section 3.1 tomodel
the impact of direct technical leverage on the time interval between releases. Furthermore,
we constructed a multivariate linear regression model, encompassing all releases (i.e., global
analysis) and we reported the result in Table 5.

Results Table 5 shows the coefficients of our model as well as their respective significance to
themodel’s predictive power.According to ourmodel, allmetrics show statistical significance
when predicting the release interval for small-medium libraries (p-value < 0.05). The model
suggests a small, but negative association between direct technical leverage in release interval
(λdir = −0.038). In other words, the model suggests that libraries that leverage more
code from third-party libraries tend to have shorter release cycles. To understand the
practical implications of the technical leverage coefficient of the model, let us walk through
a hypothetical scenario. According to the model, a 4 times increase of technical leverage
in libraries would shorten the predicted release cycle by one day (keeping all other metrics
unchanged). We calculate this by using the data shown in Table 2. Using the model, a 4 times
increase in the technical leverage of all libraries affects the predicted mean release interval
cycle in one day, from 23 days to 22 days, on average.

In large libraries, however, we observe no influence of direct technical leverage on the
release interval (p-value>= 0.05 in Table 5). This result is inlinewith the observed character-
istics for the large libraries presented in Fig. 3. In other words, large libraries leverage just
a small part of their code in third-party dependencies (median of 3%), the reliance on
dependencies code seems to have no significant impact on the libraries release interval.
Instead, large libraries release interval seems to be mostly influenced by the project release

Fig. 5 Distribution of regression model’s variables
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periodicity (previous release interval), and the change distance of the project’s total code (ρ
and cos(θ - 45°)).

Upon considering the inclusion of all releases (global analysis, both small and large
libraries), our analysis results remain consistent with those observed in small-medium
libraries. With the exception of direct leverage, we find no significant influence of direct
technical leverage on the release interval (p-value = 0.32, as indicated in Table 5). This sug-
gests that the release interval of libraries is primarily influenced by the project’s release
periodicity and the change distance of the project’s overall codebase.

Comparison to the Maven ecosystem In the original study, the authors report a positive
coefficient when discussing the impact of technical leverage on release interval. That is,
shipping more code from FOSS (higher technical leverage) does incur an overhead in the
release interval. In practical terms, while in small NPM libraries we simulate that a 4 times
higher technical leverage would in average shorten the release interval by one day. On the
other hand, inMaven, the release interval would be increased by 2-6 days, on average. In both
ecosystems, direct technical leverage provides an opportunity for better software productivity,
with popular libraries being able to ship multiple times its own code with little to no overhead
in the release cycle.

Key Takeaway: In NPM, smaller libraries seem to benefit from faster releases when
usingmore FOSS code, while larger libraries show no significant influence on release
cycles from direct technical leverage. In Maven, direct leverage also appears advan-
tageous, as projects leverage more code without significantly affecting the release
time.

4.3 RQ3: Does Technical Leverage Impact the Risk of includingmore Vulnerabilities

Motivation Weobserve in RQ2 that technical leverage appears to have ameasurable positive
impact on speeding-up releases. However, leveraging other people’s code comes with its own
risks. As vulnerabilities in NPM libraries are widespread (Decan et al. 2018b; Alfadel et al.
2021b), we expect projects with higher technical leverage to be at a higher risk of being
affected by vulnerabilities. Hence, in this RQ, we evaluate this hypothesis by assessing the
risks of projects with low and high technical leverage to vulnerability exposure.

Approach To assess the risks associated with direct technical leverage, we use the Odds
Ratio (OR) to understand the impact of direct technical leverage on the security risk. The OR
is commonly used in medicine to assess the effect of a parameter on a rare disease (Szumilas
2010). We use OR to measure the association between an exposure (high direct leverage) and
outcome (security risk), to evaluate if direct leverage is a risk factor for the occurrence of
vulnerabilities.We compare the difference in the associated risk on 1) librarieswith low direct
technical leverage and 2) libraries with high direct technical leverage. We use the following
two definitions in the computation of OR, (4), as LowLeverageLibs and HighLeverageLibs:

– Low direct technical leverage (LowLeverageLibs). Libraries with direct technical
leverage that are lower than the medians of small-medium λdir(small-medium) ≤ 2.5) and
large λdir(large) ≤ 0.034) libraries.
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– High direct technical leverage (HighLeverageLibs). Libraries with direct technical
leverage that are higher than the medians of small-medium λdir(small-medium) > 2.5) and
large λdir(large) > 0.034) libraries.

For the risk assessment, we consider a library release to be vulnerable if one or more
vulnerabilities are reported in their code or their direct dependencies. Hence, VulnLibs
include all releases that have at least one vulnerability in their code or dependencies, while
NotVulnLibs are library releases that are totally free of reported vulnerabilities.

To compute the OR, we use the following equation:

Odds Ratio (OR) =
|HighLeverageLibs ∩ VulnLibs|

|HighLeverageLibs ∩ NotVulnLibs|
|LowLeverageLibs ∩ VulnLibs|

|LowLeverageLibs ∩ NotVulnLibs|
(4)

The interpretation of the OR value is as follows:

– OR = 1 indicates no security risks associated with the direct technical leverage.
– OR > 1 indicates higher security risks (higher odds) associated with the direct technical

leverage.
– andOR< 1 indicates lower security risks (lower odds) associatedwith the direct technical

leverage.

To ensure that the difference between high and low direct technical leverage is statistically
significant, we apply the Fisher Exact test (Fisher 1992). We selected the Fisher Exact test
because it is commonly used to determine if there are non-random associations between
two categorical variables (Cogo et al. 2021; Zampetti et al. 2019), and to make our analysis
comparable to the replicated study.

Results Table 6 presents the contingency table for vulnerable libraries and direct technical
leverage used to calculate the OR. The results confirm the intuition that high direct lever-
age helps expose library releases to more vulnerabilities. More specifically, we find that
the OR for small-medium libraries to be 4.0, indicating that small-medium libraries with high
direct leverage (λdir > 2.5) have 4 times the chance of being exposed to vulnerabilities than
libraries with low direct leverage (λdir <= 2.5). While large libraries leverage proportion-
ally less code as discussed in RQ1, large libraries that leverage more than 3% of their own
code from dependencies have 7.6 times higher chance of being exposed to vulnerabilities
than large libraries with low direct leverage. In both cases, we find the differences between
high and low direct technical leverage libraries to be statistically significant (p < 0.001).

Table 6 Contingency table for vulnerable libraries vs direct technical leverage with the corresponding Odds
Ratio (OR)

Small-medium libraries Large libraries
#Vuln #Not vuln #Vuln #Not vuln

λdir > 2.5 3,212 1,918 λdir > 0.034 1,251 692

λdir ≤ 2.5 1,456 3,588 λdir ≤ 0.034 368 1,557

OR 4** OR 7.6***

*p < 0.05, **p < 0.01, ***p < 0.001
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Fig. 6 Direct technical leverage per library vs Number of vulnerabilities for small-medium library releases

To better visualize the relationship between the direct technical leverage and the number
of reported vulnerabilities, we present this relation in Fig. 6 for small-medium libraries and
Fig. 7 for large libraries. In both figures, we present the frequency of library releases grouped
by the number of vulnerabilities (x-axis) and their respective technical leverage (y-axis). From
Fig. 6, we observe that small-medium libraries (<10KLOC) with direct technical leverage
higher than2.5 (median-red line), have higher chances of facingmore vulnerabilities. Looking
at the number of vulnerabilities with the range [5-35] in Fig. 6, one can observe that numerous
library releases have direct technical leverage higher than 2.5. This difference is considerably
more prominent in large libraries, as shown in Fig. 7. Almost all releases with 5 or more
vulnerabilities have a high direct technical leverage (above the red line). In contrast, libraries
that have 4 or fewer vulnerabilities have low technical leverage. This confirms the intuition
that the direct technical leverage metric is a good indicator of the degree of risk (vulnerability
exposure) to which the library is exposed.

Fig. 7 Direct technical leverage per library vs Number of vulnerabilities for large library releases
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So far, we have shown that direct technical leverage has an impact on the number of vul-
nerabilities across small-medium and large library releases. To better understand the source
of vulnerability, we compare the number of vulnerabilities found in their own code versus in
the dependencies as shown in Fig. 8. In libraries with low technical leverage, we find that the
main source of vulnerabilities is their own code, in large libraries (1,620), whereas, direct
dependencies are the main source of vulnerabilities for small-medium size libraries (2,855).
On the other hand, dependencies become the primary source of vulnerabilities in libraries
with high technical leverage. Large libraries reported 7,781 vulnerabilities fromdependencies
against 483 vulnerabilities in their own code.While the small-medium libraries dependencies
reported a total of 18,789 vulnerabilities versus 617 reported in their own code. This shows
that high direct technical leverage comes at a cost: developers are more likely to have vul-
nerability reported in their dependencies than in their own code, for both small-medium and
large libraries in the NPM ecosystem.

Comparison to theMaven ecosystem In both Maven and NPM, shipping more times your
code base will increase the risk of being exposed to vulnerabilities. However, the risks in
NPM far surpass the ones reported by the original study in Maven. In Maven, projects are
60% more likely to become vulnerable when they rely on high technical leverage (Massacci
and Pashchenko 2021). However, in NPM, high technical leverage increases the risk of
vulnerabilities by 4 times for small-medium libraries and 7 times for large libraries.

Key Takeaway: Direct technical leverage is associated with high security risks in
both NPM and Maven ecosystems. In NPM, small to medium-sized libraries using
high direct technical leverage face a fourfold increase in reported vulnerabilities,
while large libraries with high technical leverage have a 7.6 times higher risk of being
affected by reported vulnerabilities. This observationwas also presented in theMaven
ecosystem, where small to medium-sized libraries exhibit a 60% increase in the risk
of releasing a vulnerable version if they leverage more code from dependencies.

4.4 RQ4: To what Extent do the Findings about the Technical Leverage Observed
for Direct Dependencies Hold for Level-1 Transitive Dependencies

Motivation So far, our study has focused on assessing the opportunities and risks related to
direct dependencies in NPM to make our results comparable to the replicated study (Mas-
sacci and Pashchenko 2021), modelled through the lens of direct technical leverage. Direct
dependencies are only the first level of dependencies of a project, and often represent a small
share of the total dependencies. As libraries also reuse other libraries’ code, transitive depen-
dencies quickly become the vast majority of dependencies in a project (Latendresse et al.
2023; Prana et al. 2021; Decan et al. 2017). For example, Decan et al. (2017) analyzed 300K
NPM packages and found half of the analyzed packages have at least 22 transitive depen-
dencies, and a quarter have at least 95 transitive dependencies. These packages are often
deployed in JavaScript applications in production (Latendresse et al. 2023), where the risks
of vulnerabilities are potentially harmful. Among various ecosystems, NPM stands out for its
higher code reuse compared to the Maven ecosystem. Illustratively, data from the “State of
the Developer Ecosystem 2022” survey highlights an evident example: the NPM ecosystem
showcases a greater prevalence of code reuse in comparison to Maven. This survey, drawing
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Fig. 8 Count of all vulnerabilities reported in small-medium and large library releases per vulnerability source
and technical leverage. Note that the y axis is in log-scale

insights from responses provided by over 29,000 developersworldwide, underscores the incli-
nation of developers within the NPM community to actively leverage existing packages and
libraries (The state of developer 2024). This robust culture of code reuse, however, introduces
a notable risk factor when considering transitive dependencies. Previous research in Düsing
andHermann (2022) has demonstrated that transitive dependencies serve as a potential vector
for vulnerabilities, with the ability to impact libraries through extensive chains of dependen-
cies. Another study in Lauinger et al. (2018) conducted a comprehensive examination of
JavaScript open source projects. Their study highlighted a noteworthy discovery: transitive
dependencies within a project are more prone to vulnerabilities. In addition, developers often
leverage existing dependencies to expedite the development of their own libraries.

The impact of transitive dependencies on project quality motivated us to extend our repli-
cation study to include a preliminary assessment of the opportunities and risks of technical
leverage, also considering transitive dependencies.

Approach We expanded our definition of direct technical leverage also to include the first
level of transitive dependencies (λdir+trans1), as shown in (5). The first level of transitive
dependency is the direct dependencies of a project’s direct dependencies, i.e., dependencies
with depth 2 in a dependency graph. We choose to include only the first level of transitive
dependencies to keep our study feasible. Including all transitive dependencies, while ideal to
provide a complete picture of our analysis, is too computationally expensive as their number
grows exponentially (Decan et al. 2017). More importantly, prior work shows that only
considering the direct dependencies and the first level of transitive dependencies already
accounts for the vast majority of vulnerabilities in npm packages (Mir et al. 2023). We
collect the first level of transitive dependencies for all library releases (14,042 releases) in our
dataset described in Section 3 and use the same experimental settings described in Section 3 to
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analyze the first level of transitive dependencies for all releases in our dataset. In particular, we
analyzed 320,253 dependencies to understand the impact of including transitive dependencies
on the difference in technical leverage between small-medium and large libraries, the time
interval between library releases, and the risk of including more vulnerabilities.

λdir + trans1 = Ldir + L trans1

Lown
(5)

size of direct dependencies

size of own code

size of first level of transitive deps

In this study, we consider both direct dependencies and transitive dependencies for the
vulnerability impact analysis. By conducting separate analyses, we aim to gain a comprehen-
sive understanding of the overall upper bound impact of vulnerabilities within the software
ecosystem. To this aim, we first resolve the dependencies of each library release, using the
available dependency versions at the release time (same method described in Section 3.2).
Then, for each resolved dependency of a library release, we search the Snyk dataset to deter-
mine if the dependency is affected by vulnerabilities. Each vulnerability reported in Snyk has
a range of affected versions, and we use this affected version range to infer whether depen-
dencies are considered vulnerable. This information is aggregated back to the library release,
by counting vulnerable dependencies and assessing their distribution over the severity levels.
By adhering to this criterion, we aim to ensure a thorough and accurate evaluation of the
vulnerability status for each library release in our dataset. The same process is applied for
transitive dependencies. To elaborate more, in evaluating technical leverage, encompassing
level 1 transitive dependencies, we assessed the quantity of vulnerable transitive depen-
dencies. Consequently, we categorized the library release as vulnerable if the cumulative
vulnerability count from both direct and level-1 transitive dependencies reaches at least one.

Result We present an overview of the results that include the first level of transitive depen-
dencies in Table 7. Overall, the observations we presented through RQ1-RQ3 hold. Technical
leverage presents opportunities to ship more code (RQ1) and releases faster in the case of
small-medium libraries (RQ2), but comes at the cost of a higher risk of vulnerabilities (RQ3).
Expectedly, once we include the first level of transitive dependencies, the magnitudes of

Table 7 Comparison of results from direct technical leverage (λdir ) and including the first level of transitive
dependencies (λdir+trans1)

Small-medium libraries Large libraries
λdir λdir+trans1 λdir λdir+trans1

Median Technical Leverage (RQ1) 2.5 7.7 0.03 0.06

Impact of technical Small Small – –

leverage on positive positive

release cycle (RQ2) impact impact

Vulnerability risks for libraries 4x 6.7x 7.6x 21x

with high technical leverage (RQ3)
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opportunities and risks change: we can observe a significant increase in code leveraged -
as transitive dependencies add to the direct technical leverage - and observe a much higher
risk of vulnerabilities (see the comparisons between λdir and λdir+trans1 in Table 7). In the
following, we discuss the differences and implications of this expanded experiment.

Technical leverage As Table 7 shows, including transitive dependencies increased the
amount of code leveraged by libraries in FOSS by 2-3 times, compared to just the direct
technical leverage. Small-medium sized libraries leverage 7.7 times their code in FOSS con-
sidering λdir+trans1 and large libraries saw their amount of code borrowed double, from 3%
to 6%. Figure 9 presents the relation between the own code size of the libraries and technical
leverage when including transitive dependencies. Compared to the results shown in Fig. 3,
the overall picture remains: small-medium libraries proportionally ship other people’s code
more than large libraries.

Time interval between library releases In RQ2, we report that small-medium libraries that
leveragemore FOSS code have shorter release cycles, albeit with a small effect size, as shown
in Table 7. To understand the impact of including transitive dependencies on the release speed
of both small-medium and large libraries, we built a multivariate linear regression model to
capture the impact of technical leverage on the time interval between library releases (similar
to RQ2). Similar to the results in RQ2,we observe that the coefficient of the technical leverage
(log(λdir+trans1)) has a significant negative coefficient (see Table 8), indicating that the
technical leverage (λdir+trans1) is associated with a small effect of shortening release cycles.
To understand the practical effect of technical leverage in the release cycle, we performed
the same experiment as described in RQ2, by simulating the effect on the release cycle, if we
increase all libraries technical leverage by 4 times. The result of this experiment indicated
that the impact of 4 times increase in (λdir+trans1) on release cycle is similar to considering
direct dependencies (1 day). Similarly to the results reported in RQ2, large libraries seem
not to benefit from high technical leverage, neither direct nor when we include the first level
of transitive dependencies.

Risk of includingmore vulnerabilities We use the same method presented in RQ3 to assess
the risks of including vulnerabilities that originate in both the direct and the first level of
transitive dependencies. Figure 10 presents the frequency of library releases grouped by
the number of vulnerabilities (x-axis) and their respective technical leverage (y-axis) for
small-medium and large library releases. The primary source of vulnerabilities for both
small-medium and large library releases remains their dependencies. Our results show that
technical leverage increases the magnitude of security risks for both small-medium and large

Fig. 9 The technical leverage (λdir+trans1) of 14,042 library releases per library size in LOC
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Table 8 Linear regression model fit to check the correlation between λdir+trans1, θ , ρ, and the release time
interval

Description Coefficients Small-medium libraries Large libraries
Estimate P-value Estimate P-value

Intercept 1 0.4406 0.000 0.3984 0.000

Technical Leverage log(λdir+tarns1) -0.0349 0.000 0.0040 0.688

Change distance log(ρ) 0.1041 0.000 0.0792 0.000

Change in total code cos(θ - 45o) 0.1800 0.000 0.0435 0.132

Change in own code sin(θ ) 0.0055 0.695 0.0328 0.154

Previous release interval log(�x−1 + 1) 0.2540 0.000 0.2213 0.000

For small-medium libraries: Root mean square error(rmse) =0.65, R-squared(R2) = 0.160, Adj. R-squared
(R2) = 0.160
For large libraries: Root mean square error(rmse) =0.56, R-squared( R2) = 0.118, Adj. R-squared (R2) = 0.117

libraries, compared to direct dependencies discussed in RQ3 (see Table 7). Small-medium
libraries that rely on high technical leverage have their vulnerability risk increase from 4 to
6.7 times when we include the first level of transitive dependencies in the analysis. The risk
in large libraries increased even further. Large libraries with high technical leverage have
their risk increase from 7.6 times to 21 times when we consider the first level of transitive
dependencies.

It is important to highlight, however, that when we consider transitive dependencies, the
risk of overcounting vulnerabilities also increases. We opted to include transitive dependen-
cies to provide yet another frame of reference for the analysis of opportunities and risks of

Fig. 10 Count of all vulnerabilities reported in small-medium and large library releases per vulnerability
source and technical leverage. Note that the y-axis is in the log scale
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using open-source software. Those studies have discussed that transitive dependencies inflate
the problem of vulnerabilities, saying that a sizeable number of vulnerabilities do not repre-
sent a threat to software security because the vulnerable part of the library is never used in a
software project. A recent investigation byMir et al. (2023) in theMaven ecosystem revealed
that less than 1%of packages demonstrate a reachable call path to vulnerable codewithin their
dependencies. This percentage is notably lower when contrasted with the outcomes derived
from a simplistic dependency-based analysis. Decan et al. (2018b) examined the influence
of security vulnerabilities on the NPM dependency network. Their research revealed that
about 15% of vulnerabilities are categorized as high risk, as they are addressed subsequent to
their publication date. Zimmermann et al. (2019) examined security threats within the NPM
ecosystem and uncovered a notable finding: a relatively small number of JavaScript packages
have the potential to affect a significant portion of the NPM ecosystem. This suggests that if
maintainer accounts were compromised, they could be leveraged to inject malicious code into
a majority of NPM packages. In a recent study, Liu et al. (2022) investigated vulnerability
propagation and its evolution within the NPM ecosystem. By constructing a comprehensive
dependency knowledge graph, they uncovered notable findings, including the discovery that
30% of package versions are impacted by overlooking vulnerabilities in direct dependencies.
Another prior study by Zapata et al. (2018) checked 133k websites and found 37% websites
use at least one JavaScript library with a known vulnerability. Furthermore, they found that
libraries included transitively are more likely to be vulnerable, which is aligned with our
reported findings.

Key Takeaway: Results show similar opportunities and risks, compared to consid-
ering only direct dependencies, but with a significant change in the magnitude of
both benefits and downsides.

5 Implications

In this section, we highlight the most important implications of the results of our empirical
study for both developers and researchers.

Small libraries size canbedeceiving if not accounted for the technical leverage Previous
studies have shown that practitioners consider the size of the libraries when selecting a
library for their project (Abdalkareem et al. 2017) as a small code base implies easier project
maintenance. Our results in RQ1, however, show that small libraries in NPM tend to leverage
2.5 times their own code as direct library dependencies, indicating that a larger part of the
code-base of a small library actually belongs to their dependencies’ code base. Currently,
this information is hidden from developers, who can only estimate the technical leverage by
accounting for the number of dependencies. The research community should work towards
making the information about technical leverage more visible for practitioners, that can then
make a better informed decision when selecting a library for their project.

Technical leverage tends to only increase over time Our results in RQ1 show that depen-
dency code tends to stay the same or increase over time in the majority of the releases.
Maintainers only rarely make the effort of reducing the dependency code over time, depicted
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as change direction (θ = 180°), and this can lead to significant bloating in the software project.
The bloat caused by maintaining unnecessary dependencies has strong consequences to the
software quality, as it increases the attack surface for security vulnerabilities (Pashakhanloo
et al. 2022; Soto-Valero et al. 2021b; Koishybayev and Kapravelos 2020; Azad et al. 2019)
and it impacts the application’s performance (Soto-Valero et al. 2021b; Azad et al. 2019;
Quach and Prakash 2019), overall increasing the project maintenance costs (Soto-Valero
et al. 2021b, 2022, 2021a). To proactively address and mitigate this issue, we recommend
the implementation of a structured process for developers to systematically remove or update
dependencies that are no longer essential or possess viable alternatives.

Benefits and risks of technical leverage are magnified in the NPM, compared to Maven
libraries In both ours and the replicated study (Massacci and Pashchenko 2021), results
point to the double-edged sword characteristic of technical leverage: speeding up software
releases but incurring a higher risk of exposure to public vulnerabilities. However, both ben-
efits and risks seem to be magnified in NPM. On the good side, higher technical leverage
seems to yield faster releases at a much higher rate in NPM than inMaven: leveraging 4 times
one’s code is associated with faster release in NPM, but incurs a few days delay in Maven
libraries. On the bad side, libraries with high technical leverage in NPM have 4-7 times
more chances of being affected by vulnerabilities, while in Maven, the results point to a 60%
increase of vulnerability exposure. Further investigation is necessary to establish the cause of
these vast differences across ecosystems. However, practitioners should take these results as
a motivation to establish practices of open source governance, such as, including an explicit
process for vetting new libraries, control over the bill of materials (BOM), and DevSecOps
practices (Zajdel et al. 2022). To further elaborate on these practices, a set of actionable
examples is introduced. For the practice of establishing an explicit process for vetting new
libraries, developers may create a comprehensive checklist for evaluating the suitability of
potential libraries before incorporating them into the project. This checklist could encompass
critical factors such as community support, security considerations, licensing, and alignment
with project goals. To further detail the practice of controlling the Bill of Materials (BOM),
developers may implement a centralized dependency management system designed to main-
tain a thorough and up-to-date BOM. This system plays a crucial role in providing real-time
insights into dependencies, their respective versions, and any associated security vulnerabil-
ities. By doing so, it empowers proactive decision-making within the development process.
Finally, for the DevSecOps Practices, developers may Integrate security checks seamlessly
into the continuous integration/continuous deployment (CI/CD) pipeline. This ensures that
security considerations are addressed at every stage of development, reducing the likelihood
of introducing vulnerabilities during the software development life cycle.

We need more fine-grained methods to assess the risks and benefits of technical
leverage Both the replicated study and ours are based on the direct technical leverage,
calculating benefits and risks considering only the direct dependencies. The (complete) tech-
nical leverage considers both direct and transitive dependencies. However, the lack of more
fine-grained methods for dependency usage adds numerous challenges to a study that aims
to investigate technical leverage. Without fine-grained methods that analyze the project’s
source code and infer what modules are imported, computing the technical leverage will lead
to substantially overestimated results (Zapata et al. 2018). Previous studies have shown that
the majority of transitive dependencies are not actually leveraged by software projects and
can be safely removed (Ponta et al. 2021). To expand the study, on a large scale, from direct
technical leverage to technical leverage, we need to further the development of fine-grained

123



   96 Page 28 of 35 Empirical Software Engineering            (2025) 30:96 

methods and datasets (Boldi and Gousios 2020). Such methods will help practitioners in
better assessing dependencies that are relevant for security and maintenance, as well as help
researchers study the pros and cons of technical leverage. Thus, instead of solely relying on
broad metrics, such as the frequency of code reuse, developers could consider more granu-
lar measurement metrics. For instance, analyze the impact of technical leverage on specific
software components, modules, or functions. This fine-grained approach can unveil insights
into the effectiveness and risks associated with different levels of code reuse. Moreover,
it is possible to explore the temporal aspects of technical leverage by examining how the
effectiveness and risks evolve over time. This could involve tracking changes in code reuse
patterns, identifying long-term benefits or downsides, and understanding the sustainability
of technical leverage strategies.

Technical leverage’s opportunities and risks vary significantly across software ecosys-
tems The purpose of our study was to contrast how technical leverage is used across two
major software ecosystems: NPM andMaven. Our findings show that the opportunities/risks
of technical leverage vary from the replicated study. Hence, our study motivates the need for
more research to examine the benefits/downsides of code reuse in other ecosystems (e.g. PyPI,
Go ecosystem). By extending our focus beyond the confines of NPM andMaven, researchers
can gain a more comprehensive understanding of the implications of technical leverage on
software development practices. Thus, employing technical leverage empowers developers
to discern the evolution and security posture of a software ecosystem. This insight becomes
pivotal for developers as they evaluate the viability of adopting, updating, or refraining
from changes to a library. By leveraging technical insights, developers can make informed
decisions, enhancing their ability to navigate and contribute to the ever-evolving landscape of
software development. We publish a replication package, including our entire methodology
and scripts to help foment new studies on the topic.

6 RelatedWork

Numerous studies have explored the idea of comparing similar aspects across software
ecosystems (Bogart et al. 2021; Decan et al. 2016, 2019). Decan et al. (2019) empirically
compared the evolution of dependency network in seven ecosystems. They found that there
are some differences across ecosystems due to the differences in ecosystems’ policies and
community’s practices. Bogart et al. (2021) compared breaking changes practices across
18 software ecosystems, reporting numerous differences in how each ecosystem commu-
nity handles breaking changes. Breaking changes in software packages refer to significant
modifications that can disrupt existing functionality in dependent applications, requiring
developers to adjust their code for compatibility (Raemaekers et al. 2014; Sawant e tal. 2018).
These changes encompass API modifications, dependency updates impacting compatibility,
removal or deprecation of features. Managing these changes is crucial for maintaining appli-
cation stability and functionality. Abdalkareem et al. (2020) investigated the NPM and PyPI
ecosystems. The study showed that up to 16% of Python and JavaScript packages are triv-
ially small (i.e., have less than 250 lines of code), but are highly depended upon in those
ecosystems. Studies that establish parallels across ecosystems are crucial for our understand-
ing on the dynamics of software development. The aforementioned works motivate us to
complement the replicated study (Massacci and Pashchenko 2021) by investigating technical
leverage and its associated effects on another major ecosystem, the NPM.
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Security Vulnerabilities & Dependencies Given their importance, many works have focu-
sed on better understanding the dynamics involving security vulnerabilities in the software
ecosystem (Pham et al. 2010; Hejderup 2015b). Thompson (2003). Pham et al. (2010) con-
ducted an empirical study on thousands of vulnerabilities, finding thatmost vulnerabilities are
recurring due to software code reuse. Zerouali et al. (2021) conducted a comparison between
RubyGems and NPM ecosystem to quantify the impact of security vulnerabilities. The study
found that for both ecosystems, the time required to discover vulnerabilities is increasing,
and the number of vulnerabilities is increasing faster. However, the results showed that the
vulnerabilities are discovered faster in NPM compared to RubyGems. Alfadel et al. (2021a)
compared the vulnerability reporting process of PiPy and NPM, reporting that several differ-
ences in the ecosystem’s policy has an impact on the exposure of package’s vulnerabilities.

Nappa et al. (2015) identified several security threats caused by shared libraries distributed
among ten popular client applications on Windows. Gkortzis et al. (2019) empirically inves-
tigated 301 open source java projects to explore the relationship between software reuse
and security vulnerabilities, based on static analysis of the source code. They found that
the amount of potential vulnerabilities in both native and reused code increases with larger
project sizes. Moreover, Gkortzis et al. (2021) empirically investigated 1,244 open-source
Java projects to further explore the relationship between software reuse and security vul-
nerabilities. They found that large projects are highly associated with a higher number of
vulnerabilities, and the number of dependencies is considerably correlated to its number of
vulnerabilities.

Pashchenko et al. (2018) studied how much code reuse in the SAP ecosystem is affected
by vulnerabilities, they analyzed the top 200 open source Maven projects that were reused in
SAP. The authors found that 13% of the direct and transitive dependencies were affected by
at least one vulnerability. Cox et al. (2015) analyzed 75 Java projects managed by Maven.
They found that projects using outdated dependencies were 4 times more likely to have
security issues compared to the up-to-date dependencies. Moreover, many studies illustrated
that free open source software dependencies are widely used by commercial projects as
well as FOSS projects, but they lack the proper maintenance Lauinger et al. 2018; Cox
et al. 2015). About 81.5% of the studied systems remain with outdated dependencies (Decan
et al. 2018b; Pashchenko et al. 2018). Such behaviour introduces serious bugs and security
vulnerabilities (Kula et al. 2018).

As a replication study, our study is the most closest to the study by Massacci and
Pashchenko (Massacci and Pashchenko 2021). The differences between the Maven and
NPM ecosystems motivated us to replicate the Massacci and Pashchenko (2021) on the
NPM ecosystem. We believe that our study complements the previous study by quantifying
the impact of the newly introduced metrics (Massacci and Pashchenko 2021) on the release
speed and health of the NPM libraries for both direct and level-1 transitive dependencies.
Moreover, our study highlights some differences betweenMaven andNPMecosystemswhich
require further investigation such as NPM libraries have considerably lower direct technical
leverage compared to Maven libraries.

7 Threats to Validity

In this section, we discuss the threats to the internal, construct, and external validity of our
study.
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7.1 Internal Validity

Concerns confounding factors that could have influenced our results. In evaluating the vul-
nerability impact analysis, an internal threat to validity concerns overcounting vulnerable
dependencies. This threat is particularly problematic when it comes to the inclusion of
transitive dependencies. The risk of overcounting vulnerabilities associated with transitive
dependencies has been recognized in previous research (Decan et al. 2018b; Liu et al. 2022),
emphasizing that a substantial portion of these vulnerabilities may not pose an actual threat
to software security. Given that we perform a large-scale analysis in the npm ecosystem,
there are no JavaScript methods for precisely identifying if a vulnerable portion of a tran-
sitive dependency poses a threat to its downstream dependents. Thus, our findings should
be interpreted as an upper bound for the risks of high technical leverage, i.e., applications
are likely to experience a lower risk in practice. The diversity of tasks within npm packages
spanning data science, networking, and web development poses a potential threat to internal
validity. This stems from the potential influence of specific tasks on the technical leverage of
individual libraries. For instance, a data science package, with features like machine learn-
ing models and numerical computations, may exhibit larger size and significantly higher
technical leverage compared to a package designed for web development. Failure to appro-
priately address these task-specific influences may compromise the internal validity of the
study. However, it’s crucial to note that our study focuses on an abstract view of the NPM
ecosystem, comparing it to Maven. Another potential concern lies in vulnerability analysis,
which involves identifying vulnerabilities from the Snyk database. To alleviate this threat,
we selected 50 samples and then initiated a POST request to the Open Source Vulnerabilities
(OSV) API endpoint at https://api.osv.dev/v1/query. This request contained pertinent data
such as the package name and version. Our findings validated the robustness of our results.

7.2 Construct Validity

Considers the relationship between theory and observation, in case the measured variables
do not measure the actual factors. In our study, we focus on including the most popular
NPM packages by selecting the top-most depended upon packages. Numerous other criteria
are used to assess popularity, e.g., the number of stargazers and number of downloads,
which could result in a different set of studied libraries. We still believe that our dataset is
fairly representative of the most popular NPM, including libraries such as react, Lodash,
angular, and Vue. Another threat is related to the construct of small-medium versus large
libraries.Wechoose the threshold of 10KLOCtodistinguish small-mediumsize libraries from
large size libraries. Selecting different thresholds might lead to different results. To alleviate
this threat, we explored different thresholds (i.e., 5, 10, 15, and 20 KLOC), and we found
that the final findings persist across the different thresholds. The choice of vulnerabilities
dataset used in our analysis poses a potential threat that may have impacted our findings.
We rely on the Snyk.io dataset as the only source for vulnerabilities. Our choice of Snyk is
inspired by prior work (Decan et al. 2018b; Massacci and Pashchenko 2021; Chinthanet et al.
2021), and the Snyk team continuously monitors widely used libraries and their associated
vulnerabilities (Snykwebsite 2022). So,we expect our vulnerabilities dataset to be reasonably
accurate and not impact our results in a significant manner. In our analysis, we utilized
Ordinary Least Squares (OLS) regression, well-suited for continuous dependent variables.
However, a potential concern arises when independent variables possess different scales,
potentially impacting the regressionmodel’s coefficient interpretation. Tomitigate this threat,

123

https://api.osv.dev/v1/query.


Empirical Software Engineering            (2025) 30:96 Page 31 of 35    96 

we thoroughly examined the ranges of all independent variables and confirmed that they fall
within reasonable bounds. Another potential concern arises from the incorporation of a log
scale in the regression model. However, we justify this choice by illustrating the distribution
of each variable. The decision to apply the log function is motivated by the observation of
long tails in the distributions, highlighting the need for a transformation to address skewed
data and improve the model’s robustness.

7.3 External Validity

Concerns the generalization of our results to other software ecosystems. While some of our
findings are inline with the results of the replicated study on the Maven ecosystem, other
findings are not. It is expected that our results are representative of the most popular libraries
in the NPM ecosystem but may not generalize to other ecosystems (e.g., PiPy, CRAN).
Furthermore, our study focuses on analyzing libraries in NPM, which have specific charac-
teristics and may differ from other types of projects (e.g., applications). The methodology we
replicate in the study could (and should) be applied to other software ecosystems to estab-
lish a more comprehensive view of the impact of direct technical leverage on ecosystems.
Another important consideration for the external validity of our study is the potential limita-
tion in generalizing findings to level 2+ transitive dependencies within the npm ecosystem.
However, we contend that our sub-analysis, which includes level-1 transitive dependencies,
remains a robust approach for assessing generalizability. Level-1 dependencies, being the
primary contributors to a package’s functionality and characteristics, are pivotal in provid-
ing representative insights. Moreover, delving into level 2+ transitive dependencies poses
resource challenges due to the extensive nature of dependency networks, making our focus
on level-1 dependencies both pragmatic and informative. Moreover, the sample used for
analysis might not be representative of the broader population. If the selection of projects
or libraries is biased, the odds ratios calculated may not generalize well to other contexts,
limiting the external validity of the findings. Further, the analysis may be sensitive to the
timing of data collection. Technological changes, updates, or shifts in development practices
over time could impact both technical leverage and vulnerability rates, affecting the stability
and generalizability of the odds ratios. Another potential threat associated with metrics used
to measure technical leverage, particularly those reliant on the size of the codebase and its
dependencies, lies in their susceptibility to certain challenges. This includes concerns related
to issues associated with dependency depth and the static nature of the size metric which
may not capture the evolving nature of technical leverage over time. We acknowledge that
our study’s conclusions, such as the observed increase in vulnerability risk linked to high
technical leverage across various library sizes, may be affected by selection bias in our sam-
ple. Our study was designed to investigate the opportunities and risks associated with high
technical leverage, focusing on the top 142 libraries known for their widespread usage and
influence. Thus, our findings may not generalize to all libraries in the npm ecosystem. In
future research, we plan to include a diverse range of libraries, considering factors such as
size, domain, and community support.

8 Conclusions

To capture the importance of notions introduced by Massacci and Pashchenko (Massacci
and Pashchenko 2021) on the NPM software ecosystem, we have applied the direct technical
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leverage and related metrics to 14,042 NPM library releases. Moreover, we extend the study
to investigate the impact of including the first level of transitive dependencies on technical
leverage. The results show that small-medium libraries leverage considerablymore code from
FOSS than large libraries, with developers of small-medium libraries constantly including
more dependencies. We also find that releases from small-medium libraries with high direct
technical leverage tend to ship faster than releases with low direct technical leverage. How-
ever, when taking into account the first level of transitive dependencies, the release process
is only slightly slower. It is worth noting that although high direct technical leverage can
expedite the release process, it also entails potential risks and costs. Libraries that leverage
more code from dependencies have, on average, at least 4 times the risk of being affected by
vulnerabilities than libraries that leverage less code from dependencies. Moreover, the risk
of vulnerabilities increases by 6.7 times when high technical leverage is involved, especially
when including the first level of transitive dependencies. Overall, our study shows that tech-
nical leverage is associated with opportunities for shipping more code in less time, but comes
at the cost of a higher risk of vulnerabilities. Both the opportunities and risks are magnified
in NPM, compared to the Maven ecosystem. Therefore, JavaScript developers should cau-
tiously select their dependencies to avoid staying on the losing end of the trade-off technical
leverage entails.

Author Contributions Haya Samaana: Conceptualization, Methodology, Software, Writing-Original Draft.
Diego Elias Costa: Conceptualization, Methodology, Writing-Original Draft. Ahmad Abdellatif: Conceptu-
alization, Methodology, Writing-Original Draft. Supervision Emad Shihab: Conceptualization, Methodology,
Writing-Original Draft.

Funding This research received no specific grant from any funding agency.

Data Availability We provided a replication package containing all data and scripts used in our study. We
refer to the replication package as part of our list of contributions in the introduction. Link: https://zenodo.
org/record/6585292

Declarations

Conflicts of interests/Competing interests. The authors declare that they have no conflict of interest.

Ethical approval. This article does not contain any studies with human participants.

Informed consent. Not applicable.

References

(2024) Effect size cohen. https://www.statisticssolutions.com/free-resources/directory-of-statistical-analyses
/effect-size/. Accessed 31 Jan 2024

(2022) Libraries-the open source discovery service. https://libraries.io/. Accessed 09 Nov 2022
(2022) Snyk website. https://snyk.io/. Accessed 09 Nov 2022
(2024) The state of developer ecosystem. https://www.jetbrains.com/lp/devecosystem-2022/. Accessed 25 Jan

2024
(2023) Snyk vulnerability db. https://snyk.io/vuln Accessed 9 Jan 2023
Abdalkareem R, Nourry O, Wehaibi S, Mujahid S, Shihab E (2017) Why do developers use trivial packages?

an empirical case study on npm. In Proceedings of the 2017 11th joint meeting on foundations of software
engineering, pp 385–395

Abdalkareem R, Oda V, Mujahid S, Shihab E (2020) On the impact of using trivial packages: An empirical
case study on npm and pypi. Empir Softw Eng 25(2):1168–1204

123

https://zenodo.org/record/6585292
https://zenodo.org/record/6585292
https://www.statisticssolutions.com/free-resources/directory-of-statistical-analyses/effect-size/
https://www.statisticssolutions.com/free-resources/directory-of-statistical-analyses/effect-size/
https://libraries.io/
https://snyk.io/
https://www.jetbrains.com/lp/devecosystem-2022/
https://snyk.io/vuln


Empirical Software Engineering            (2025) 30:96 Page 33 of 35    96 

Abdellatif A, Zeng Y, Elshafei M, Shihab E, Shang W (2020) Simplifying the Search of npm Packages. Inf
Softw Technol 126

Abdulkareem SA, Abboud AJ (2021) Evaluating python, c++, javascript and java programming languages
based on software complexity calculator (halstead metrics). In IOP conference series: Materials science
and engineering, vol 1076. IOP Publishing, p 012046

Alfadel M, Costa DE, Shihab E (2021) Empirical analysis of security vulnerabilities in python packages. In
2021 IEEE international conference on software analysis, evolution and reengineering (SANER), pp
446–457

Alfadel M, Costa DE, Shihab E, Mkhallalati M (2021a) On the use of dependabot security pull requests. In
2021 IEEE/ACM 18th international conference on mining software repositories (MSR), pp 254–265

Anderson TW (2021) An introduction to multivariate statistical analysis. Technical report, Wiley New York
Anderson TW (1962) An introduction to multivariate statistical analysis. Technical report, Wiley, New York
Azad BA, Laperdrix P, Nikiforakis N (2019) Less is more: quantifying the security benefits of debloating web

applications. In 28th USENIX security symposium (USENIX Security 19), pp 1697–1714
Basili VR, Briand LC, Melo WL (1996) How reuse influences productivity in object-oriented systems. Com-

mun ACM 39(10):104–116
Bogart C, Kästner C, Herbsleb J, Thung F (2021) When and how to make breaking changes: Policies and

practices in 18 open source software ecosystems. ACM Trans Softw Eng Methodol 30(4)
Boldi P,GousiosG (2020) Fine-grained network analysis formodern software ecosystems.ACMTrans Internet

Technol 21(1)
Chinthanet B, Kula RG, McIntosh S, Ishio T, Ihara A, Matsumoto K (2021) Lags in the release, adoption, and

propagation of npm vulnerability fixes. Empir Softw Eng 26(3):1–28
Cogo FR, Oliva GA, Bezemer CP, Hassan AE (2021) An empirical study of same-day releases of popular

packages in the npm ecosystem. Empir Softw Eng 26(5):1–42
Cox J, Bouwers E, Van Eekelen M, Visser J (2015) Measuring dependency freshness in software systems. In

2015 IEEE/ACM 37th IEEE international conference on software engineering, vol 2. IEEE, pp 109–118
Dashevskyi S,BruckerAD,Massacci F (2018)Ascreening test for disclosedvulnerabilities in foss components.

IEEE Trans Softw Eng 45(10):945–966
Decan A, Mens T, Grosjean P (2019) An empirical comparison of dependency network evolution in seven

software packaging ecosystems. Empir Softw Eng 24(1):381–416
DecanA,MensT,ClaesM (2017)An empirical comparison of dependency issues in oss packaging ecosystems.

In 2017 IEEE 24th international conference on software analysis, evolution and reengineering (SANER),
IEEE, pp 2–12

Decan A, Mens T, Constantinou E (2018a) On the evolution of technical lag in the npm package dependency
network. In 2018 IEEE international conference on software maintenance and evolution (ICSME), ICSE,
pp 404–414

Decan A, Mens T, Constantinou E (2018b) On the impact of security vulnerabilities in the npm package
dependency network. In Proceedings of the 15th international conference onmining software repositories,
pp 181–191

Decan A, Mens T, Grosjean P (2019) An empirical comparison of dependency network evolution in seven
software packaging ecosystems. Empir Softw Eng 24(1):381–416

Düsing J, Hermann B (2022) Analyzing the direct and transitive impact of vulnerabilities onto different artifact
repositories. Digit Threats Res Pract 3(4):1–25

Fisher RA (1992) Statistical methods for research workers. In Breakthroughs in statistics, Springer, pp 66–70
Flauzino M, Veríssimo J, Terra R, Cirilo E, Durelli VH, Durelli RS (2018) Are you still smelling it? a

comparative study between java and kotlin language. In Proceedings of the VII Brazilian symposium on
software components, architectures, and reuse, pp 23–32

Fruhlinger J (2020) Equifax data breach faq: What happened, who was affected, what was the impact? |
cso online. https://www.csoonline.com/article/3444488/equifax-data-breach-faq-what-happened-who-
was-affected-what-was-the-impact.html. Accessed 31 Jan 2023

Gkortzis A, Feitosa D (2021) Spinellis D (2021) Software reuse cuts both ways: An empirical analysis of its
relationship with security vulnerabilities. J Syst Softw 172:110653

Gkortzis A, Feitosa D, Spinellis D (2019) A double-edged sword? software reuse and potential security
vulnerabilities. Springer, In International conference on software and systems reuse, pp 187–203

Grinter RE (1996) Understanding dependencies: A study of the coordination challenges in software develop-
ment. PhD thesis, University of California, Irvine

Hejderup J (2015a) In Dependencies We Trust: How vulnerable are dependencies in software modules? PhD
thesis

Hejderup J (2015b) In dependencies we trust: How vulnerable are dependencies in software modules?

123

https://www.csoonline.com/article/3444488/equifax-data-breach-faq-what-happened-who-was-affected-what-was-the-impact.html
https://www.csoonline.com/article/3444488/equifax-data-breach-faq-what-happened-who-was-affected-what-was-the-impact.html


   96 Page 34 of 35 Empirical Software Engineering            (2025) 30:96 

Husain H, Wu HH, Gazit T, Allamanis M, Brockschmidt M (2019) Codesearchnet challenge: Evaluating the
state of semantic code search. arXiv preprint arXiv:1909.09436

Imtiaz N, Thorn S,Williams L (2021) A comparative study of vulnerability reporting by software composition
analysis tools. In Proceedings of the 15th ACM/IEEE international symposium on empirical software
engineering and measurement (ESEM), pp 1–11

Kikas R, Gousios G, Dumas M, Pfahl D (2017) Structure and evolution of package dependency networks.
In 2017 IEEE/ACM 14th international conference on mining software repositories (MSR), IEEE, pp
102–112

Koishybayev I, Kapravelos A (2020) Mininode: Reducing the attack surface of node. js applications. In 23rd
international symposium on research in attacks, intrusions and defenses (RAID 2020), pp 121–134

Kula RG, German DM, Ouni A, Ishio T, Inoue K (2018) Do developers update their library dependencies?
Empir Softw Eng 23(1):384–417

Latendresse J, Mujahid S, Costa DE, Shihab E (2023) Not all dependencies are equal: An empirical study on
production dependencies in npm

Lauinger T, Chaabane A, Arshad S, Robertson W, Wilson C, Kirda E (2018) Thou shalt not depend on me:
Analysing the use of outdated javascript libraries on the web. arXiv preprint arXiv:1811.00918

Lim WC (1994) Effects of reuse on quality, productivity, and economics. IEEE Softw 11(5):23–30
Liu C, Chen S, Fan L, Chen B, Liu Y, Peng X (2022) Demystifying the vulnerability propagation and its

evolution via dependency trees in the npm ecosystem. In Proceedings of the 44th international conference
on software engineering, pp 672–684

Luszcz J (2018) Apache struts 2: how technical and development gaps caused the equifax breach. Netw Secur
2018(1):5–8

Massacci F, Pashchenko I (2021) Technical leverage in a software ecosystem: Development opportunities and
security risks. In 2021 IEEE/ACM 43rd international conference on software engineering (ICSE), IEEE,
pp 1386–1397

MirAM,KeshaniM, Proksch S (2023)On the effect of transitivity and granularity on vulnerability propagation
in the maven ecosystem. arXiv preprint arXiv:2301.07972

Mohagheghi P, Conradi R (2007) Quality, productivity and economic benefits of software reuse: a review of
industrial studies. Empir Softw Eng 12(5):471–516

Mohagheghi P, Conradi R, Killi OM, SchwarzH (2004)An empirical study of software reuse vs. defect-density
and stability. In Proceedings 26th international conference on software engineering, IEEE, pp 282–291

Møller A, Nielsen BB, TorpMT (2020) Detecting locations in javascript programs affected by breaking library
changes. Proceedings of the ACM on programming languages, 4(OOPSLA):1–25

Nappa A, Johnson R, Bilge L, Caballero J, Dumitras T (2015) The attack of the clones: A study of the impact
of shared code on vulnerability patching. In 2015 IEEE symposium on security and privacy, IEEE, pp
692–708

Nesbitt A, Nickolls B (2017) Libraries.io, open source repository and dependency metadata. https://doi.org/
10.5281/zenodo.808273

Neuburger JD, Mollod JP, Proskauer Rose L (2021) Trends in privacy and data security: 2020. Proskauer
Nielsen BB, Torp MT, Møller A (2021) Semantic patches for adaptation of javascript programs to evolving

libraries. In 2021 IEEE/ACM 43rd international conference on software engineering (ICSE), IEEE, pp
74–85

Pashakhanloo P, Machiry A, Choi H, Canino A, Heo K, Lee I, Naik M (2022) Pacjam: Securing dependencies
continuously via package-oriented debloating. In Proceedings of the 2022 ACM on Asia conference on
computer and communications security, pp 903–916

Pashchenko I, PlateH, Ponta SE, SabettaA,Massacci F (2018)Vulnerable open source dependencies:Counting
those that matter. In Proceedings of the 12th ACM/IEEE international symposium on empirical software
engineering and measurement, pp 1–10

Pashchenko I, Vu DL, Massacci F (2020) A qualitative study of dependency management and its security
implications. In Proceedings of the 2020 ACM SIGSAC conference on computer and communications
security, pp 1513–1531

Pham NH, Nguyen TT, Nguyen HA, Nguyen TN (2010) Detection of recurring software vulnerabilities. In
Proceedings of the IEEE/ACM international conference on automated software engineering, pp 447–456

Ponta SE, Fischer W, Plate H, Sabetta A (2021) The used, the bloated, and the vulnerable: Reducing the attack
surface of an industrial application. In 2021 IEEE international conference on software maintenance and
evolution (ICSME), pp 555–558

Prana GAA, Sharma A, Shar LK, Foo D, Santosa AE, Sharma A, Lo D (2021) Out of sight, out of mind? how
vulnerable dependencies affect open-source projects. Empir Softw Eng 26(4):1–34

Quach A, Prakash A (2019) Bloat factors and binary specialization. In Proceedings of the 3rd ACMworkshop
on forming an ecosystem around software transformation, p 31–38

123

http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1811.00918
http://arxiv.org/abs/2301.07972
https://doi.org/10.5281/zenodo.808273
https://doi.org/10.5281/zenodo.808273


Empirical Software Engineering            (2025) 30:96 Page 35 of 35    96 

Raemaekers S, Van Deursen A, Visser J (2014) Semantic versioning versus breaking changes: A study of
the maven repository. In 2014 IEEE 14th international working conference on source code analysis and
manipulation, IEEE, pp 215–224

Sawant AA, Aniche M, van Deursen A, Bacchelli A (2018) Understanding developers’ needs on deprecation
as a language feature. In Proceedings of the 40th international conference on software engineering, pp
561–571

Sonatype. 2020 software supply chain report. https://www.sonatype.com/resources/white-paper-state-of-the-
software-supply-chain-2020. Accessed 31 Jan 2023

Soto-Valero C, Harrand N, Monperrus M, Baudry B (2021) A comprehensive study of bloated dependencies
in the maven ecosystem. Empir Softw Eng 26(3):1–44

Soto-Valero C, Durieux T, Harrand N, Baudry B (2022) Coverage-based debloating for java bytecode. ACM
Comput Surv (CSUR)

Soto-Valero C, Harrand N, Monperrus M, Baudry B (2021b) A comprehensive study of bloated dependencies
in the maven ecosystem. Empir Softw Eng 26(3):1–44

Szumilas M (2010) Explaining odds ratios. J Can Acad Child Adolesc Psychiatry 19(3):227
Thompson HH (2003) Why security testing is hard. IEEE Secur Priv 1(4):83–86
Turcotte A, Arteca E, Mishra A, Alimadadi S, Tip F (2022) Stubbifier: debloating dynamic server-side

javascript applications. Empir Softw Eng 27(7):161
Yu L, Lu Y, Shen Y, Zhao J, Zhao J (2022) Pbdiff: Neural network based program-wide diffing method for

binaries. Math Biosci Eng 19(3):2774–2799
Zajdel S, Costa DE, Mili H (2022) Open source software: An approach to controlling usage and risk in

application ecosystems
Zampetti F, Bavota G, Canfora G, Di Penta M (2019) A study on the interplay between pull request review

and continuous integration builds. In 2019 IEEE 26th international conference on software analysis,
evolution and reengineering (SANER), IEEE, pp 38–48

Zapata RE, Kula RG, Chinthanet B, Ishio T, Matsumoto K, Ihara A (2018) Towards smoother library migra-
tions: A look at vulnerable dependency migrations at function level for npm javascript packages. In 2018
IEEE international conference on software maintenance and evolution (ICSME), IEEE, pp 559–563

Zar JH (2005) Spearman rank correlation. Encycl Biostat 7
Zerouali A, ConstantinouE,Mens T, RoblesG,González-Barahona J (2018)An empirical analysis of technical

lag in npm package dependencies. Springer, In international conference on software reuse, pp 95–110
Zerouali A, Mens T, Robles G, Gonzalez-Barahona JM (2019) On the diversity of software package popularity

metrics: An empirical study of npm. 2019 IEEE 26th international conference on software analysis.
Evolution and Reengineering (SANER), IEEE, pp 589–593

Zerouali A, Mens T, Decan A, De Roover C (2021) On the impact of security vulnerabilities in the npm and
rubygems dependency networks. arXiv preprint arXiv:2106.06747

Zerouali A, Mens T, Robles G, Gonzalez-Barahona JM (2019) On the diversity of software package popularity
metrics: An empirical study of npm. In 2019 IEEE 26th international conference on software analysis,
Evolution and Reengineering (SANER), IEEE, pp 589–593

ZimmermannM, Staicu CA, Tenny C, PradelM (2019) Small world with high risks: A study of security threats
in the npm ecosystem. In 28th {USENIX} security symposium ({USENIX} security 19), pp 995–1010

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://www.sonatype.com/resources/white-paper-state-of-the-software-supply-chain-2020
https://www.sonatype.com/resources/white-paper-state-of-the-software-supply-chain-2020
http://arxiv.org/abs/2106.06747

	Opportunities and security risks of technical leverage:  A replication study on the NPM ecosystem
	Abstract
	1 Introduction
	2 Background
	2.1 Direct Technical Leverage
	2.2 Evolution Metrics

	3 Case Study Setup
	3.1 Collecting NPM Libraries
	3.2 Collecting and Resolving Direct and Level-1 Transitive Dependencies
	3.3 Calculating the Size of Libraries and their Dependencies
	3.4 Collecting Vulnerability Data

	4 Case Study Results
	4.1 RQ1: Is there a Difference in Direct Technical Leverage, Distance and Direction  of Changes Between Small-Medium and Large Libraries
	4.2 RQ2: How does Direct Technical Leverage Impact the Time Interval between Library Releases
	4.3 RQ3: Does Technical Leverage Impact the Risk of including more Vulnerabilities
	4.4 RQ4: To what Extent do the Findings about the Technical Leverage Observed  for Direct Dependencies Hold for Level-1 Transitive Dependencies

	5 Implications
	6 Related Work
	7 Threats to Validity
	7.1 Internal Validity
	7.2 Construct Validity
	7.3 External Validity

	8 Conclusions
	References


