
An Exploratory Study on Machine Learning Model
Management

JASMINE LATENDRESSE, Concordia University, Canada
SAMUEL ABEDU, Concordia University, Canada
AHMAD ABDELLATIF, University of Calgary, Canada
EMAD SHIHAB, Concordia University, Canada

Effective model management is crucial for ensuring performance and reliability in Machine Learning (ML)
systems, given the dynamic nature of data and operational environments. However, standard practices are
lacking, often resulting in ad hoc approaches. To address this, our research provides a clear definition of
ML model management activities, processes, and techniques. Analyzing 227 ML repositories, we propose a
taxonomy of 16 model management activities and identify 12 unique challenges. We find that 57.9% of the
identified activities belong to the maintenance category, with activities like refactoring (20.5%) and docu-
mentation (18.3%) dominating. Our findings also reveal significant challenges in documentation maintenance
(15.3%) and bug management (14.9%), emphasizing the need for robust versioning tools and practices in the
ML pipeline. Additionally, we conducted a survey that underscores a shift towards automation, particularly in
data, model, and documentation versioning, as key to managing ML models effectively. Our contributions
include a detailed taxonomy of model management activities, a mapping of challenges to these activities,
practitioner-informed solutions for challenge mitigation, and a publicly available dataset of model management
activities and challenges. This work aims to equip ML developers with knowledge and best practices essential
for the robust management of ML models.
CCS Concepts: • Software and its engineering→ Maintaining software.
Additional Key Words and Phrases: Software engineering, machine learning, model management.
ACM Reference Format:
Jasmine Latendresse, Samuel Abedu, Ahmad Abdellatif, and Emad Shihab. 2024. An Exploratory Study on
Machine LearningModel Management. 1, 1 (August 2024), 32 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Machine Learning (ML) systems have seen tremendous growth over the years with increasing
applications in healthcare, transportation, and finance, emerging as a cornerstone of technological
advancement [1]. This evolution is intricately linked to advancements in deep neural network
technologies, increased data availability, and enhanced access to computational resources [2],
collectively forming the foundation for the evolution of ML systems. These pivotal elements
enhance the capabilities and adaptability of ML systems, empowering them to effectively address
complex problems across various domains [2, 3].
Authors’ addresses: Jasmine Latendresse, Concordia University, Montreal, Canada, jasmine.latendresse@mail.concordia.ca;
Samuel Abedu, Concordia University, Montreal, Canada, samuel.abedu@mail.concordia.ca; Ahmad Abdellatif, University of
Calgary, Calgary, Canada, ahmad.abdellatif@ucalgary.ca; Emad Shihab, Concordia University, Montreal, Canada, emad.
shihab@concordia.ca.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM XXXX-XXXX/2024/8-ART
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: August 2024.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Jasmine Latendresse, Samuel Abedu, Ahmad Abdellatif, and Emad Shihab

The dynamic nature of data and operational environments adds to the unique complexity of
ML systems, necessitating models to be adaptable and robust against changing conditions and
requirements [4]. Thus, practitioners need to effectively manage their ML models throughout
their lifecycle as it directly impacts the performance and reliability of ML models [5]. In the
literature, model management is defined as the process of tracking a model in all phases of its
lifecycle [4]. This includes the initial development, where the model architecture and parameters
are set; the training phase, which involves data handling and parameter tuning; deployment,
where the model is integrated into its application environment; and monitoring and updating
post-deployment. Specifically, this process involves tracking changes in model architecture, data
sets, training parameters, performance metrics, and operational integration to effectively manage
and optimize the model’s reliability and performance.

However, prior work shows that organizations and practitioners often resort to ad hoc methods
to implement the processes of model management, which can lead to inefficiencies and decreased
reliability [6]. This not only creates logistical challenges but also poses risks in terms of model
performance and applicability in real world scenarios. For example, inadequate model monitoring
and updating procedures may result in inaccurate predictions or suboptimal outcomes, highlighting
the importance of robust model management [6–8]. To the best of our knowledge, previous studies
have not specifically discussed the tasks associated with model management. Identifying these
tasks is essential to ensure that team members across different projects have a shared understanding
of their responsibilities and workflows, ultimately improving model performance and reducing
maintenance costs.

In their extensive review of existing literature, Nahar et al. emphasize the need for a structured
approach to model management [8]. They argue that a clear definition of the activities, processes,
and techniques involved in model management is crucial. This view is supported by Vartak et al.,
who define model management as the process of tracking a model in all phases of its lifecycle [5, 9].
The authors propose a tool to automate the processes of model management, focusing mainly on
the implementation of the tool, keeping the decision-making and practical processes of model
management black-box.

To address this gap and guide practitioners in effectively managing their models throughout the
lifecycle, we build a taxonomy for model management activities. To achieve this, we mine commit
messages and issues for 227 ML repositories from GitHub. Then we analyze and categorize various
activities involved in model management and link them to specific challenges. To further enrich
our findings, we conducted a survey with 21 practitioners from industry and academia, from which
we observed a significant trend towards the automation of ML pipelines. Our work aims to address
the following research questions:
RQ1 What are the activities of machine learning model management? We find six unique

categories of model management activities, namely maintenance, development, environment,
experimentation, data engineering, and deployment. Moreover, our findings indicate that
a significant 57.9% of these activities fall under the maintenance category. This category
encompasses tasks such as refactoring, documentation, bug fixing, and testing. Such a pre-
dominance of maintenance activities aligns with the dynamic nature of ML systems, which
constantly need to adapt to changing data and requirements [4].

RQ2 What are the challenges of machine learning model management? Our study reveals
12 unique challenges of model management encompassing areas such as documentation
maintenance, bug management, compatibility and dependency issues, and implementation
difficulties. Notably, 15.3% of these challenges are associatedwith documentationmaintenance.
This is closely trailed by bug management at 14.9% and compatibility issues at 12.9%. These

, Vol. 1, No. 1, Article . Publication date: August 2024.

An Exploratory Study on Machine Learning Model Management 3

findings suggest that practitioners often struggle with keeping documentation up-to-date
and consistent with the frequent changes models are through.

RQ3 How can machine learning model management challenges be mitigated? Our survey
results show a clear inclination among participants (47.6%) towards adopting tools (e.g., DVC)
that enable versioning of models, data, and documentation. Additionally, 66.7% of respondents
emphasize the importance of replicability by utilizing virtual environments and container
technologies.

Contributions. In addition, to provide practitioners with a practical reference to efficiently allocate
their efforts and resources, we analyze the complexity of model management activities using the
time it takes to resolve issues. We believe that our study will assist practitioners in developing and
managing models reliably and make the following contributions:
(1) We provide a taxonomy of 16 ML model management activities. To the best of our knowledge,

this is the first study that provides a taxonomy of model management and its associated
activities.

(2) We identify 12 unique challenges of model management that we map to model management
activities.

(3) We conduct a survey with practitioners and provide practical insights into mitigating model
management challenges.

(4) We provide a set of actionable recommendations based on our findings and experience in
conducting this study for practitioners to guide them in managing their ML models.

(5) Based on our findings, we provide a definition of model management processes.
(6) We make our labeled data set of model management activities and challenges publicly

available.1

Paper Organization. The rest of the paper is organized as follows. Section 2 describes our
methodology. Section 3 presents the findings of our three research questions. Section 4 discusses
the implications of our findings. Section 5 discusses related work. Section 6 outlines the threats to
the validity of our study. Section 7 concludes this paper.

2 STUDY DESIGN
The main goal of our study is to identify the model management activities. To achieve this, we
resort to analyzing ML projects on GitHub and examining ML commits in those projects. In this
section, we describe the dataset used in our study and present the methodology to identify ML
commits on these projects.

2.1 Dataset
To investigate how ML projects manage their models, we collect data from ML projects available on
GitHub, which hosts over 350 million repositories. Also, GitHub allows to collect a rich dataset from
open-source repositories with high traceability between commits, pull requests, and issues [10],
which enables us to answer our research questions. We describe below the process we follow to
curate the dataset for this study.
Selecting candidate projects For our analysis, we resort to the dataset proposed by Gonzalez et
al. [1] and revised by Rzig et al. [11]. The dataset was initially created by using the GitHub API
to curate a list of repository topic labels relevant to ML and then collecting projects with these
labels. Rzig et al. then conducted a manual analysis of the dataset to remove trivial or non-ML
1https://zenodo.org/records/10602341

, Vol. 1, No. 1, Article . Publication date: August 2024.

https://zenodo.org/records/10602341

4 Jasmine Latendresse, Samuel Abedu, Ahmad Abdellatif, and Emad Shihab

projects. The final set of projects contains 4,031 ML projects that are composed of ML frameworks
and libraries such as Tensorflow,2 as well as ML applications such as Faceswap.3
Filtering candidate projects To select projects for our study, we use the GitHub API to mine
the project metadata of each project as of September 2023 and filter our dataset based on criteria
already used in prior work [10, 12–14]:

• The repository has been in development for at least one year.
• The number of commits in the repository is at least 10.
• The number of days since the last push operation is at most 100.
• The repository has at least 100 stars.
• The repository has more than 3 contributors.

The choice of the above criteria is driven by several key considerations related to the objectives
of our study, which centers on understanding established model management practices. First,
repositories that have been active for at least a year are more likely to have reached a certain level
of maturity and stability in their development processes and mature projects are more likely to
have encountered and addressed various challenges, providing a richer source of data for our study.
Second, repositories with at least 10 commits indicate a baseline level of development activity
and engagement from contributors, suggesting that the project has moved beyond initial setup
phases [14]. Third, limiting the selection to repositories with recent activity (last push not more than
100 days from the day of collecting the data) ensures that the selected projects are active and helps
in studying the most current and relevant model management practices and challenges. Fourth, the
number of stars on a repository serves as a proxy for its popularity and community approval. Thus,
selecting repositories with at least 100 stars increases the likelihood that they are recognized by
the community and that they incorporate established practices in their development [15]. Finally,
including projects with more than three contributors ensures that the repository benefits from
collaborative development, which may indicate that it has a well-defined workflow.
This filtering process yields a dataset of 365 ML projects. To further refine the dataset and

ensure the relevance of the selected repositories in our study, we conducted a manual inspection of
each repository. Specifically, we focused on the repositories’ documentation, folder structure, and
contained files, looking for evidence of training and testing code. During this process, we aimed
to differentiate between general software projects that use "ML" or "AI" as keywords for broader
purposes and those genuinely involved in ML workflows. For example, the project “akoumjian/-
datefinder”4 uses the keyword “NLP” but has no trace of any ML workflow in the repository.

For the purpose of our study, an "ML project" or "ML repository" is defined as one that directly
involves the development or application of ML models, including but not limited to tasks like data
preprocessing, model training, model evaluation, and the deployment of ML models. Projects solely
providing libraries or frameworks that facilitate these activities without directly engaging in model
lifecycle activities were classified separately and excluded if they did not demonstrate active use of
these libraries in ML model processes within the repository itself.
Table 1 presents summary statistics for the key metrics of our final dataset comprised of 227

projects, including the number of commits, number of stars, open issues, time since the last push
(as of September 2023), number of contributors, forks, watchers, repository size, and age of the
repositories (measured in months). The statistics reveal that the projects of our dataset are active,
with a median of 1,201 commits and a median of 6 days since the last push. Moreover, the median
number of open issues stands at about 171, while the maximum is at 2,330. This indicates that some
2https://github.com/tensorflow/tensorflow
3https://github.com/deepfakes/faceswap
4https://github.com/akoumjian/datefinder

, Vol. 1, No. 1, Article . Publication date: August 2024.

https://github.com/tensorflow/tensorflow
https://github.com/deepfakes/faceswap
https://github.com/akoumjian/datefinder

An Exploratory Study on Machine Learning Model Management 5

projects might struggle with issue resolution or have a highly active community. Also, the projects
of our dataset are, on average, 69 months. Thus, our dataset consists of projects that are active, with
high engagement, mature, with sustained development efforts. Moreover, we manually inspected
the repositories of the selected projects and extracted various approaches and technologies that
encompass both supervised and unsupervised learning methods. For instance, we found supervised
learning techniques such as decision trees, neural networks, transfer learning, and deep learning,
predominantly used for tasks requiring labeled data (e.g., knowledge graph classification5 and drug
discovery6). We also found unsupervised methods that include Bayesian networks and generative
AI, which are more suited for tasks that involve pattern recognition7 and data clustering8 without
pre-labeled examples.

Table 1. Descriptive statistics of the projects in our dataset.

Statistic Mean Median Std. Deviation Minimum Maximum
Nb Commits 2898.04 1201.0 4944.04 51.0 32384.0
Stars 5204.94 2269.0 8500.80 130.0 64628.0
Open Issues 171.59 71.0 296.09 0.0 2330.0
Time Since Last Push (days) 19.52 6.0 25.92 1.0 99.0
Contributors 67.67 31.0 90.12 3.0 454.0
Forks 1416.86 431.0 4105.90 102.0 52849.0
Watchers 5204.94 2269.0 8500.80 130.0 64628.0
Size (KB) 120718.44 46244.0 207640.88 90.0 1345947.0
Repo Age (months) 69.76 62.53 24.31 32.73 161.37

2.2 Identifying ML Model Commits and Issues
In this section, we detail the filtering process used to identify commits and issues that involve
changes related to ML models.
We start by mining the commits of the selected 227 repositories using Pydriller,9 a Python

framework to analyze Git repositories. For each commit, we collect the commit hash, commit
message, number of insertions and deletions, and the list of files modified by the commit. This
results in a total of 660,509 commits modifying 3,146,539 files. After a manual inspection of the
dataset of the contents of sampled commits, we found commits with empty commit messages. We
removed such commits from our dataset, yielding a final dataset of 659,773 commits, modifying
3,143,164 files.

To identify the commits performing changes on models, we use a set of heuristics. In particular,
we randomly examined 100 repositories to identify the ML files in these repositories. We identified
14 unique keywords such as "models" and "train". Next, we search the file path and file name
that contains these keywords or variations of different ML models such as "random forest", "ran-
dom_forest", "randomforest". Prior works in ML have also utilized keyword-based searching [16, 17].
With this, we obtain a total of 95,765 commits modifying 386,936 model-related files, which serves
as our primary source for empirical analysis in RQ1. Table 2 shows the complete list of keywords
used in this step.
5https://github.com/pykeen/pykeen
6https://github.com/deepchem/deepchem
7https://github.com/jeeliz/jeelizFaceFilter
8https://github.com/jmschrei/pomegranate
9https://github.com/ishepard/pydriller

, Vol. 1, No. 1, Article . Publication date: August 2024.

https://github.com/pykeen/pykeen
https://github.com/deepchem/deepchem
https://github.com/jeeliz/jeelizFaceFilter
https://github.com/jmschrei/pomegranate
https://github.com/ishepard/pydriller

6 Jasmine Latendresse, Samuel Abedu, Ahmad Abdellatif, and Emad Shihab

Table 2. Keywords used for filtering commit messages.

Keyword Variants

model models
train training
learn learning, learner
regressor regressors, regression
predict predictor, predictors
linearregression linear_regression, linear-regression
logisticregression logistic_regression, logisticregression
randomforest random_forest, randomforest
neuralnetwork neural_network, neuralnetwork
supportvector support_vector, supportvector, svm
naivebayes naive_bayes, naive-bayes
knn
kmeans

Similarly, we collect and filter the closed issues from the 227 ML projects of our dataset along
with their meta-data, including titles, bodies, and pull request links. This step generates an extensive
set of 376,758 issues, which is used for our analysis to answer RQ2.

2.3 Data Preparation for Categorization
The goal of RQ1 and RQ2 is to identify a set of ML model management activities (RQ1) and
challenges (RQ2). For this, we resort to the manual categorization of the collected commits and
issues from the 227 ML projects of our dataset. To obtain representative samples of commits and
issues to categorize, we adopt a stratified random sampling technique. Specifically, we use a 95%
confidence level with a 5% error margin, resulting in a sample size of 385 artifacts (either commits
or issues) for each dataset. To guarantee the generalizability of our findings, we ensure that each
project in our dataset is represented at least once. Next, we conduct a preliminary manual review
of each sample to ensure the relevance of each data artifact to the topic of ML, addressing any
instance that might have bypassed the initial filtering step. Should any item be deemed unrelated
to ML (e.g., a web application10 or a game engine11), we randomly replace it with another artifact
to maintain the total sample count at 385. The descriptive statistics of the sample of commits and
the sample of issues can be found in Table 3 and Table 4, respectively. Table 3 shows the number
of deleted lines, the number of added lines, and the number of files affected by the commits. The
median values for deleted and added lines are 15 and 33.5, respectively, which suggests that while
most commits involve smaller changes, there are a few very large commits. Table 4 the number of
comments, the number of assignees, the labels, and the age (in days) of the sampled issues. The
mean and standard deviation for the number of comments per issue are of 3.1 and 4.2, respectively,
which indicates that while some issues are highly discussed, the majority receive few comments.
The number of assignees per issue has a median of 1, meaning that issues are typically assigned to
one person, and the median age is of 2 days, indicating that most issues are resolved quickly. We
detail the categorization process of the commits and issues in RQ1 and RQ2, respectively.
10https://github.com/guess-js/guess
11https://github.com/magefree/mage

, Vol. 1, No. 1, Article . Publication date: August 2024.

https://github.com/guess-js/guess
https://github.com/magefree/mage

An Exploratory Study on Machine Learning Model Management 7

Table 3. Descriptive Statistics of the Commit Sample

Deleted Lines # Added Lines # Files

Mean 1,808.6 2,510.5 28.7
Std. Deviation 26,902.8 27,026.7 267.2

Min 0 0 1
Median 15 33.5 4

Max 516,978 403,925 5,029

Table 4. Descriptive Statistics of the Issue Sample

Comments # Assignees # Labels Age (days)

Mean 3.1 1 1.3 57
Std. Deviation 4.2 0.1 0.6 175.1

Min 0 1 1 0
Median 2 1 1 2

Max 34 2 5 1,462

2.4 Survey Design
In RQ3, we aim to identify solutions addressing the challenges highlighted in RQ2. For this, we
conduct an online survey, grounding our methodology in the guidelines proposed by Kitchenham et
al. [18]. We construct our survey into three distinct sections. The first section captures demographic
insights, asking participants about their professional background and experience working with
ML models. Subsequent sections in the survey (sections 2 and 3) present the challenges outlined
in RQ2, prompting participants to pinpoint their strategies to mitigate each challenge. To avoid
overwhelming participants, we provided potential solutions for each challenge. To do so, we
systematically analyzed the sample of 385 pull requests’ discussions and code changes associated
with the studied issues. This helped us identify practical solutions that developers applied to resolve
the raised issues. Furthermore, for issues that had no apparent fix, we extended our search to
academic and industry-focused literature. We found a number of notable studies and articles, such
as the study by Nahar et al., which reports a meta-summary of the most commonly reported
machine learning challenges in surveys with industry practitioners [8], the study by Guan et al.,
which presents a comprehensive study of bugs in ML model optimization [19], and the article by
Swimm Team, which discusses the concept of "Documentation as Code" in the context of software
development [20]. Using these sources, we curated a list of potential solutions for each challenge,
ensuring that our survey participants had access to a set of options to choose from and comment
on. Moreover, to allow participants for more flexible answers, we facilitated multiple options for
responses, incorporating an "Other" option for unlisted solutions, enabling participants to provide
responses (solutions) that might not have been covered by the predefined choices. We also provide
a "Does not apply" option in cases the participants did not encounter a particular challenge in their
practice. We then pilot the survey with four practitioners and used their insights and feedback to
refine the survey for better clarity. Next, we leverage our network connections in industry and
academia to distribute it. For a more extensive distribution of our survey, we employ a snowball
sampling technique, asking initial respondents to cascade it to other professionals in their network,
particularly those with experience in the field of ML [21].

, Vol. 1, No. 1, Article . Publication date: August 2024.

8 Jasmine Latendresse, Samuel Abedu, Ahmad Abdellatif, and Emad Shihab

3 RESULTS
In this section, we present the results of our three research questions. For each research question,
we present its motivation, the approach to answer the question, and the results.

RQ1: What are the activities of ML model management?
Motivation. In the realm of machine learning, concrete model management processes are still
poorly defined and often vary significantly across different teams and projects [22, 23]. This lack of
standardization can lead to higher maintenance costs and reduced model performance, especially
in diverse collaborative environments [6]. A fundamental step towards mitigating this issue is to
clearly identify and define the activities that are part of the model management process. Thus, in
this RQ, we establish a taxonomy of model management activities based on the analysis of open
source ML repositories, aiming to provide a structured framework that practitioners can adopt.
This will not only help in standardizing the tasks involved in model management, but also ensure
that all team members of a project have a shared understanding of what needs to be done, how,
and when.
Approach. To answer this research question, we categorize the sample of commits described
in Section 2.3 into model management activities. r2c8, r3c7: To achieve this, we build an initial
ML model management scheme using prior work [5, 6, 9, 24]. This list served as a base for our
preliminary scheme, which we then expanded and refined through an analysis of the commit data.
To refine our scheme, we employ an iterative process. The first two authors independently label
100 commits from the selected sample by analyzing the commits’ code changes, messages, as well
as any linked pull requests. Second, the annotators meet to compare their labeling and refine the
scheme by adding, editing, or removing labels as they gain new insights from the data. Next, with
the refined scheme, the authors then independently label the remaining 285 artifacts from the
sample and measure their inter-rater agreement using the Cohen’s Kappa coefficient, a well-known
statistic used to measure the inter-rater agreement level for categorical scales. The resulting Kappa
value is a scale that ranges between -1.0 and +1.0, where a negative value means poorer than
chance agreement, zero indicates agreement by chance, and a positive value indicates better than
chance agreement. The Kappa value after labeling the commits is 0.61, which indicates a substantial
level of inter-rater agreement [25]. It is worth noting that the annotators agreed that in some
cases, multiple labels should be applied to one commit message even if it is considered "atomic".
Thus, one instance of the sample may be classified with more than one label. However, since the
Kappa assumes that the labels are mutually exclusive (i.e., one label per instance of the sample), we
transformed the multi-label data into multi-instances before calculating the Kappa coefficient.12
Any discrepancies or disagreements in the labeling are resolved through discussion and consensus
among the authors. Finally, activities that are related to a common phase of model management
are grouped into broader categories. For example, the commit message "refactoring parameter
handling",13 classified as a refactoring activity, and the commit message "Fix JUnitsRUnitsPyUnits
after recent change to shuffling of training data per chunk"14 classified as a testing activity, are both
grouped under the "maintenance" category because they aim to enhance the model’s reliability and
performance without introducing new features or functionalities.
Results. Table 5 shows the results of our manual classification of GitHub commit messages,
yielding a total of 16 model management activities grouped under 6 categories. From this, activities
under Maintenance category account for over half (57.9%) of the total activities, revealing
12https://docs.kolena.com/metrics/tp-fp-fn-tn/
13https://github.com/elki-project/elki/commit/3c3ded2c7667f03e4c502477733550322a99d00c
14https://github.com/h2oai/h2o-3/commit/7c13f3bd7c4f4cb8fd2bf56afc989f6f423cd55c

, Vol. 1, No. 1, Article . Publication date: August 2024.

https://docs.kolena.com/metrics/tp-fp-fn-tn/
https://github.com/elki-project/elki/commit/3c3ded2c7667f03e4c502477733550322a99d00c
https://github.com/h2oai/h2o-3/commit/7c13f3bd7c4f4cb8fd2bf56afc989f6f423cd55c

An Exploratory Study on Machine Learning Model Management 9

Table 5. Definition and distribution of model management activities.

Activity Definition % of Occ.

M
ai
nt
en

an
ce

Refactoring
Enhancing the clarity, structure, and maintain-
ability of the model’s codebase without chang-
ing its functional behavior.

20.5%

57.9%

Documentation
Detailing the model’s capabilities and perfor-
mance, offering guidelines for use, and provid-
ing illustrative examples and tutorials.

18.3%

Bug Fix

Addressing and rectifying unintended behav-
iors or issues in the model’s code and imple-
menting safeguards and responses within the
code to manage and address potential runtime
anomalies and issues.

11.6%

Testing
Evaluating the correctness, behavior, and com-
patibility of model components, ensuring they
work as intended.

7.5%

D
ev

el
op

m
en

t

Model Behavior Enhancement
Augmenting an existing model by introducing
new features, optimizing existing functionali-
ties, or boosting its overall performance.

10.6%

18.9%

Model Design Defining and developing the structure, lay-
ers, and organization of the machine learning
model.

3.9%

Functional Configurations
Adjusting settings that dictate the model’s in-
put and output behaviors, such as input types
and processing capabilities.

2.5%

Model Versioning

Cataloging and preserving different iterations
of a model, encapsulating specific combina-
tions of its code, data, and configurations for
reproducibility and tracking.

1.9%

En
vi
ro
nm

en
t

Dependency Management Keeping track of and updating external ma-
chine learning libraries and tools that the
model relies on.

3.7%

10.3%
Plumbing

Handling behind-the-scenes system-related
tasks essential for the model’s operation but
not directly related to its ML logic, such as
crafting command-line interfaces.

3.5%

Compatibility Management
Ensuring the model can seamlessly operate
and interact within its designated environ-
ment, including specific operating systems and
external utilities.

3.1%

, Vol. 1, No. 1, Article . Publication date: August 2024.

10 Jasmine Latendresse, Samuel Abedu, Ahmad Abdellatif, and Emad Shihab
Ex

pe
ri
m
en

t

Training and Validation

The process of training the model on datasets
and subsequently evaluating its predictive ac-
curacy and effectiveness using standard met-
rics, including de- termining the best set of
hyperparameters for the model to achieve op-
timal results and performance.

5.4%

7.7%

Experiment Logging
Capturing and recording important model-
related metadata, error messages, and runtime
events for diagnostic and tracking purposes.

2.3%

D
at
a

En
gi
ne

er
in
g

Data Engineering Preparing, transforming, and organizing data
to be fit for model training and validation.

4.1% 4.1%

D
ep

lo
ym

en
t CI/CD

Automating processes associated with build-
ing, integrating, and deploying the model to
operational settings.

0.6%
1%

Model Porting
Translating or adapting a trained model so it
can function across diverse computing plat-
forms or environments.

0.4%

the importance of maintaining the health of machine learning models post-development. The
Maintenance category is primarily concerned with the health and clarity of a machine learning
model after it is deployed into production. It covers a range of activities from documentation to bug
fixes to ensure the continued operability, readability, and reliability of the model’s codebase. This
suggests that once a model is developed, ensuring its continued utility and performance becomes
the central focus.
Specifically, 20.5% of the activities in our dataset, where developers enhance the clarity of the

model’s codebase through code refactoring. For example, the commit message "Move NeuralNetClas-
sifier and -Regressor to own modules"15 encompasses various refactoring tasks. The primary goal
is to enhance the codebase’s maintainability, modularity, and comprehensibility. This is achieved
by relocating ML components to dedicated modules, restructuring tests to align with the changes,
and removing unused functions and imports. Thus, it ensures that the code remains agile and can
adapt to new requirements without incurring a heavy technical debt [26]. Documentation emerges
as the second most frequent activity under Maintenance (and overall) with 18.3%, which indicates
that practitioners place an emphasis on describing model functionalities and efficacy. We find
that documentation-related tasks do not only pertain to keeping up-to-date information on the
model, but also provide example use-cases through Jupyter Notebooks.16 Those examples serve as
a quick start guide for users to use and integrate the ML model in their application. These examples
serve as quick-start guides, enabling users to efficiently integrate and utilize the ML model in their
applications. Thus, practitioners maintain the examples in parallel with deployed models to ensure
its reproducibility, as it is seen in the commit "Updated GAN model notebook".17
15https://github.com/skorch-dev/skorch/commit/271f422c7bda4af8bbc44a3388a7d2e3bd285f90
16https://jupyter.org/
17https://github.com/deepchem/deepchem/commit/55d1ff20ad5583f88aeedca012529d8e15f820aa

, Vol. 1, No. 1, Article . Publication date: August 2024.

https://github.com/skorch-dev/skorch/commit/271f422c7bda4af8bbc44a3388a7d2e3bd285f90
https://jupyter.org/
https://github.com/deepchem/deepchem/commit/55d1ff20ad5583f88aeedca012529d8e15f820aa

An Exploratory Study on Machine Learning Model Management 11

The Maintenance category also includes bug fixing, accounting for 11.6% of all activities. Our
analysis of the labeled commit messages and code changes reveals that bugs range from minor im-
plementation issues (e.g., calling incorrect tokenizer18) to more serious bugs that could compromise
model results and performance (e.g., selecting the wrong channel for loss multiplier19). This leads
to another critical activity of model management, testing, which accounts for 7.5% of all activities.
Testing is the process of ensuring that models not only operate as intended but can also perform
across varied and unforeseen scenarios (e.g., a model designed for facial recognition might struggle
under unusual lighting conditions, or skin types that weren’t prevalent in the training data, leading
to biases). Robust testing protocols ensure the model’s reliability, performance, and its ability to
make precise predictions. It is also a proactive step to minimize future bugs and issues [27, 28].

Development activities account for a significant portion of model management (18.9%),
but are less predominant than Maintenance. These activities are foundational as they pertain to
the creation, design, and improvement of machine learning models. Within this category, model
behavior enhancement, which consists of refining existing models with additional functionalities
to adapt to evolving requirements, is the most prevalent activity under Development with 10.6%.
For example, the commit "relocating functors, adding inline to device functors, adding entropy
for classification"20 describes reorganizing and optimizing device-specific functions, while also
enhancing the classification process by considering the entropy of predictions. These changes
contribute to enhancing the model’s performance and ability to adjust or accommodate to changing
data or evolving requirements. Interestingly, we note that the occurrences of Model Design (3.9%)
and Functional Configurations (2.5%) activities are relatively low compared to Model Behavior
Enhancement, as shown in Table 5. These activities include the definition and configuration of the
model’s structure and layers, exerting a direct impact on the model’s performance. One possible
reason for this observation is that such activities occur locally (i.e., not committed to the project’s
repository). Finally, the last activity of the Development category, model versioning which accounts
for 1.9% of all occurrences, is an activity focused on recording and saving various iterations of
a model. While model versioning is not as predominant as other activities, it remains crucial for
ensuring that specific combinations of its code, data, and configurations are traceable and can be
replicated [9].

About 10.3% of the activities are linked to the system and external configurations within
which a machine learning model is deployed and functions. The Environment activities
include updating external ML libraries and performing system related tasks (e.g., updating the
code to accommodate API changes21). Those activities ensure that the ML model can operate
seamlessly and consistently across various environments (e.g., Windows, MacOS). Understanding
the environment settings is critical as it helps practitioners develop reproducible and scalable
models, avoid dependency conflicts, and mitigate the risk of unexpected issues that might arise
during production [9].

The Experiment category accounts for 7.7% of the activities in our dataset.The Experiment
category is centered around the processes of tuning, testing, and refining machine learning models
to ensure their accuracy and effectiveness. Before publishing the ML model, practitioners often
experiment with the model to evaluate the model’s performance to understand how well the model
is likely to perform in real-world scenarios. Moreover, Experimentation allows practitioners to
identify and address errors, bugs, or anomalies present in the model.
18https://github.com/dmlc/gluon-nlp/commit/46e77acf2561d9680c36c9f93e1db19a8f8de575
19https://github.com/deepfakes/faceswap/commit/3852b2b2d1e19cd2f0d72d111e9d6733bbf5ae26
20http://github.com/rapidsai/cuml/commit/229bd038b691a47e2eca9392065705d1729a942c
21https://github.com/mne-tools/mne-python/pull/9274/commits/e4c75db77890e70a7c5760645deedc41e40e61e1

, Vol. 1, No. 1, Article . Publication date: August 2024.

https://github.com/dmlc/gluon-nlp/commit/46e77acf2561d9680c36c9f93e1db19a8f8de575
https://github.com/deepfakes/faceswap/commit/3852b2b2d1e19cd2f0d72d111e9d6733bbf5ae26
http://github.com/rapidsai/cuml/commit/229bd038b691a47e2eca9392065705d1729a942c
https://github.com/mne-tools/mne-python/pull/9274/commits/e4c75db77890e70a7c5760645deedc41e40e61e1

12 Jasmine Latendresse, Samuel Abedu, Ahmad Abdellatif, and Emad Shihab

Data is the backbone of any ML model due to its fundamental role in shaping the model’s
effectiveness, performance, and reliability. In our dataset, the Data engineering activities account
for 4.1% of activities. These activities pertain to data preprocessing carried out prior to feeding
it into the model during both the training and serving stages. (e.g., adding new features to the
training data.22 We believe that the low occurrences of data engineering activities in our dataset
might be due to the fact the data are stored in data versioning control (e.g., DVC and MLFlow).
The Deployment category accounts for only 1% of total occurrences, making it one of the least

frequent category of activities. Within this category, CI/CD (i.e., continuous integration and deploy-
ment) processes contribute 0.6%, focusing on automation associated with model deployment, while
model porting, which deals with making the model functional across various platforms, constitutes
0.4%. The lower frequency of these activities does not imply lesser importance. Instead, the limited
occurrences can be attributed to the nature of deployment activities, which are often conducted at
the system level (e.g., DevOps) involving cloud, server, and extensive tool configurations, which
are typically not committed to the project’s repository. These activities are specialized and might
not occur as frequently as other activities, but they remain critical for operationalizing models in
real-world environments [9].
Based on the findings presented in Table 5, we define machine learning model management

as a continuous process that encompasses activities aimed at ensuring the efficiency, reliability,
and effectiveness of ML models throughout their lifecycle. This process includes the inception
and development of the model’s architecture, and its continuous refinement, maintenance, and
adaptation to meet changing requirements and operational environments. Specifically, model
management covers:

• Maintenance activities: Refactoring for codebase clarity and maintainability; compre-
hensive documentation detailing the model’s use and functionalities; bug fixes to address
and correct anomalies; and testing to ensure correct behavior and compatibility of model
components.

• Development activities: Model behavior enhancement through the introduction of new
functionalities or performance optimization; functional configurations to dictate input-output
behaviors; model versioning for tracking changes; and dependency management to maintain
external library and tool integrations.

• Environment setup: Plumbing to handle essential system-related tasks that support the
model’s operation; and compatibility management to ensure seamless model operation across
various systems.

• Experimentation: Training and validation of models to evaluate accuracy and performance;
and experiment logging to record essential metadata for future evaluation.

• Data engineering: The preparation and transformation of data to suit model training and
validation.

• Deployment: Continuous integration and continuous deployment (CICD) processes for
building and integrating models; and model porting to adapt models for use across different
platforms or environments.”

Hence, model management in the context of machine learning is the interdisciplinary coordination
of the aforementioned activities to ensure that models remain functional, effective, and adaptable
throughout their lifecycle - from initial implementation to deployment and after.
22https://github.com/openvenues/libpostal/commit/6a20ce5e854a4a0c347b8da887eff511ac849ca5

, Vol. 1, No. 1, Article . Publication date: August 2024.

https://github.com/openvenues/libpostal/commit/6a20ce5e854a4a0c347b8da887eff511ac849ca5

An Exploratory Study on Machine Learning Model Management 13

Machine learning model management spans a wide range of activities, with maintenance
being the most dominant category of activities, grouping 57.9% of all activities. This
suggests that there is a significant focus on clarity, maintainability, and documentation in
real-world projects post-development. Particularly, refactoring (20.5%) and documentation
(18.3%), stand out as a vital insight for teams managing and scaling machine learning
models in collaborative settings. The Development phase (18.9%) and Environment com-
patibility (10.3%) of models also emerged as critical aspects of model management.

RQ2: What are the challenges of model management?
Motivation. Building upon the taxonomy of model management activities outlined in RQ1, this
RQ focuses on the complexities that have arisen due to the rapid advancements and widespread
application of AI and ML technologies. These complexities hinder practitioners’ ability to effectively
manage their models [6, 8]. By identifying and analyzing the challenges currently faced in model
management, this RQ aims to highlight potential pitfalls and issues that practitioners encounter.
Understanding these challenges in the current context of machine learning is pivotal not only for
improving the efficiency and reliability of ML models but also for helping practitioners in mitigating
risks associated with ad hoc, custom practices of model management [8, 22, 23]. Thus, this RQ
contributes towards establishing more systematic and effective model management processes by
providing insights into particularly challenging areas, in which best practices can be applied.
Approach. To address this RQ, one of the authors starts by selecting GitHub issues relevant to
model management by manually reviewing each issue’s title, body, comments, and labels. Issues
primarily associated with non-model management tasks were excluded from the sample and
replaced. Next, to identify the challenges of ML model management, we employ the open card
coding process to categorize the sample of issues described in Section 2.3 based on the issue title,
body, pull request, and comments. In particular, the authors developed a preliminary coding scheme
based on a preliminary analysis of the sampled issues, with a particular focus on identifying the
main challenges. Then, the first author initiates the process with "open coding", reading through the
issues to identify and note emerging themes, patterns, or challenges from which a coding scheme
is developed. This scheme consists of categories or "codes" that represent the identified themes.
For example, in the context of ML model management, codes might represent specific types of
challenges, such as data quality and computational resource constraints. To ensure that the codes
are agreed on by all authors, the coding scheme then undergoes an iterative refinement process
involving four key steps. After the initial coding is developed by the first author, all authors meet
to discuss the preliminary codes. This step aims to gather feedback on the relevance, clarity, and
comprehensiveness of the initial codes. Based on the feedback, codes are modified, merged, or split
to better capture the challenges observed in the issues. With each iteration of modifying the coding
scheme, a subset of issues is re-coded to test the applicability of the revised codes. The iterative
process continues until no changes are made to the codes and all authors agree on the final set of
codes.
Results. Table 6 shows the results of our manual classification of GitHub issues, yielding a total
of 13 model management challenges. From this, we see that the most prominent challenge
is the necessity for Documentation Maintenance, constituting about 15.3% of the total
challenges. This challenge highlights the difficult in updating of documentation to mirror model
modifications, including new feature integrations, bug fixes, and performance metric adjustments.
Moreover, maintaining up-to-date tutorials and example models form a critical part of this challenge,
since the final model is often the result of many different experimentations including multiple

, Vol. 1, No. 1, Article . Publication date: August 2024.

14 Jasmine Latendresse, Samuel Abedu, Ahmad Abdellatif, and Emad Shihab

rounds of data processing, hyperparameter tuning, and other activities as described in RQ1. Thus,
despite the critical importance of documentation for the model’s reproducibility and maintainability,
developers find it difficult to reflect the model’s continuous changes in a way that is accessible
for stakeholders of different levels [6]. This finding aligns with Nahar et al.’s work on challenges
in building systems with machine learning components, in which they report that "practitioners
find documentation more important than ever in ML, but find it more challenging than traditional
software documentation"[8].
Following closely is Bug Management, comprising 14.9% of occurrences. This challenge

highlights the difficulty in identifying, tracking, and rectifying bugs that might hinder the model or
its components from functioning as intended (e.g., inconsistent exceptions occuring during training
with specific metrics.23 Bug Management is particularly challenging in the context of machine
learning since models, instead of failing, will simply give incorrect results, and the lack of testing
oracles make such "silent failures" difficult to identify. Bug Management also involves an efficient
feedback loop between users and developers given the frequent back and forth on collaborative
platforms when reporting and resolving bugs. This interaction also involves participants with
widely varying levels of experience, yet often lacks a systematic approach to identifying and
resolving issues [6, 8]. These results further corroborate with our findings from RQ1, which
identified maintenance-related activities (documentation and bug fix) as some of the most prominent
activities of model management. The need for continuous documentation updates- covering features,
performance metrics, and example models- underscores the rapidly evolving nature of machine
learning models. Similarly, the considerable attention to bug tracking and fixing highlights the
complexity and dynamic nature of machine learning systems.

Compatibility issues, accounting for 12.9% of all occurrences, reflect the challenges in
ensuring that the machine learning model or its components are aligned with various
operational environments such as different operating systems or programming language
versions. These challenges stem from the experimental nature of model development; having to
transition from an experimental environment, like exploratory code, often in a notebook, to a wider,
pipeline-driven system that integrates both ML and non-ML components as well as many tools and
frameworks [8, 29, 30]. Additionally, machine learning models, especially deep learning models,
often have specific hardware requirements such as particular GPU architectures and ensuring the
compatibility across different environments necessitates to be proactive in keeping up with updates
and changes in the entire pipeline, which often requires a wide array of knowledge that is not only
focused on machine learning components. This is further reiterated by Vartak et al. who proposed
ModelDb, a tool to address the challenge of heterogeneity in models as well as their hardware and
software requirements [9].

Dependency issues, accounting for 11.2% of all occurrences, involve handling the external
dependencies that influence the flexibility and performance of a model. Dependencies in
a project can range from libraries and frameworks to system tools and external services that the
project relies upon. What makes it particularly challenging in the context of model management is
that machine learning systems have both ML and non-ML components, which creates multiple
levels of dependencies to manage. The first and most distinct form of dependency in models is
data. Machine learning systems are fundamentally dependent on data pipelines for training and
inference and the dynamic nature of data, such as changes in data distribution and structure,
makes it unique to model management [31]. Library and frameworks dependencies are also crucial
in model management since machine learning projects often rely on a myriad of libraries and
frameworks that are constantly updated, meaning that models need frequent adjustments to
23https://github.com/RubixML/ML/issues/64

, Vol. 1, No. 1, Article . Publication date: August 2024.

https://github.com/RubixML/ML/issues/64

An Exploratory Study on Machine Learning Model Management 15

stay compatible with the latest versions, making the dependency management more challenging
compared to traditional systems. Furthermore, machine learning models incorporate a wide range of
algorithms that encompass various optimization techniques, statistical methods, or neural network
architectures, each with their own dependencies that evolve, adding a level of complexity not
commonly found in traditional systems [8].
Our analysis further reveals that 10.1% of the encountered challenge are attributed to

Implementation issues, involving potential shortcomings in the existing model structure
and code. As models continuously evolve with changing requirements, this challenge generally
manifests as a deficiency in critical functional features or the accumulation of technical debt,
thereby requiring regular refactoring as reported in RQ1. This corroborates with prior works
reporting that ML-centric systems go through frequent revisions more than traditional systems
and that practitioners struggle planning for change in their model implementation [2, 8, 21, 32–34].
These issues can in turn lead to Model Performance challenges, which represent 7% of the
challenges. These challenges are associated with the prediction quality of models and includes
tasks like benchmarking, managing overfitting and underfitting, adjusting hyperparameters, and
constant monitoring of the model’s performance. Practitioners report having difficulty with ad-hoc
monitoring practices and that there is a severe lack of tooling to automate the monitoring process,
making it difficult to integrate it to the pipeline early, which results in intensive manual work
post-deployment [33, 35–37].

The challenges associated with Data Management, which constitute 5.7% of all challenges,
are critical in model management as data serves a foundation for model training, val-
idation, and testing. Data Management challenges span across the entire model development
lifecycle and encompass issues with data acquisition, ensuring the data’s integrity and reliability
over time, data preprocessing, and even extends to data storage and retrieval. Such tasks mostly take
place locally, which explains why Data Management challenge are not as frequent in our dataset
despite being so critical to model management. Our analysis reveals that practitioners struggle
with ensuring data quality and often resort to manual processing of the data (e.g., relying on an
annotation tool for ML practitioners that does not label sentence pairs,24 which further corroborates
with previous works reporting that data quality is not well supported by tools and that practitioners
need to invest significant effort and time in data preprocessing and cleaning [2, 8, 38, 39]. Also,
the dynamic nature of model management creates the need for data versioning since it allows to
maintain a historical record of data alterations, allowing to revert to previous versions or facilitat-
ing debugging by answering questions such as "Which data change made the model performance
deteriorate?". However, the problem is that there is little tool support to automate such a task,
which affects the traceability and reliability of the data [34].

Code Performance, accounting for 4.8% of the reported challenges, involves refining the
source code to enhance speed and resource efficiency, focusing on areas such as algorithm im-
provement, computational efficiency, memory management, and leveraging optimal hardware
utilization. As previously mentioned, the experimental nature of model development forces prac-
titioners to transition from exploratory code, often in a notebook, to a wider, pipeline-driven
system, which often lacks standardized review processes [36, 40, 41]. Resource Constraints
(3.7%) on the other hand, revolve around navigating the limitations in computational
resources such as processing capacity, memory, storage, and bandwidth. These challenges
often manifest in training durations, storage capacity issues, latency problems, scalability, and
considerations regarding cost-effectiveness (e.g., reducing YOLOv5 post-processing time in a neural
24https://github.com/doccano/doccano/issues/24

, Vol. 1, No. 1, Article . Publication date: August 2024.

https://github.com/doccano/doccano/issues/24

16 Jasmine Latendresse, Samuel Abedu, Ahmad Abdellatif, and Emad Shihab

network inference framework25). Previous works show that practitioners often have difficulties
in building scaleable pipelines and adhering to serving requirements like latency and throughput
[8, 21, 33, 34, 42]. Our analysis also reveals that Code Performance and Resource Constraints
are not isolated challenges but rather closely linked aspects in model management. Optimized code
performance can significantly alleviate resource constraints by ensuring more efficient utilization
of computational power, memory, and storage.
Our analysis also identifies Infrastructure, Testing, and Modularity as critical yet

somewhat lesser represented challenges, comprising 3.3%, 2.4%, and 2.2% of the recorded
challenges, respectively. Infrastructure challenges highlight the issues of integrating and
deploying models within functional systems, necessitating scalable infrastructure and systematic
model monitoring. However, practitioners report that the infrastructure and tooling that supports
model development is often lacking as it is not automated enough, is too difficult to integrate in
the existing environment, and is too limited to specific tasks or data types [8, 37, 43]. Concurrently,
Testing, which involves establishing robust tests to ascertain model behavior and accuracy, is a
critical aspect of model management as it ensures the reliability and efficacy of the models, yet
practitioners find it difficult to achieve due to the lack of quality assurance criteria and testing
oracles. Nahar et al. explain that no model is expected to be always correct, but that it is difficult to
define what kind of mistakes are acceptable for a model [8]. Moreover, there is a growing need
for tools and automated test input generation to reduce the cost of curating test data. Meanwhile,
Modularity issues hint at an emerging challenge in creating more manageable and efficient
machine learning systems. However, the many implicit data and tooling dependencies created
when designing systems that incorporate both ML and non-ML components make it difficult to
modularize, reinforcing "change anything changes everything" [26]. While the aforementioned
challenges are less prominent in our dataset, they are of significant importance as they shed light
on the emerging issues that are faced by practitioners in ML projects.

Finally, 6.5% of the challenges fall under the Other category, which encompasses challenges that
don’t fit directly into the aforementioned classification and account for less than 1% or less of the
total occurrences. Such challenges range from deciphering unclear error messages to ensuring
model validation accuracy and streamlining deployment processes. This suggests that there is a
wide range of model management challenges, some of which being less prominent but may be
equally as crucial in specific contexts that occur outside collaborative platforms.

Our findings reveal Documentation Maintenance (15.3%) and Bug Management (14.9%)
as the most prominent challenges in model management, highlighting the necessity for
constant up-to-date documentation and effective bug tracking throughout the model
lifecycle. Compatibility (12.9%) and Dependency (11.2%) challenges underscore integra-
tion and system complexities, emphasizing the need for tools and automation in the ML
pipeline to support dynamic model maintenance and optimization.

RQ3: How can model management challenges be mitigated?
Motivation. In RQ2, we identified 12 key challenges of model management. While these challenges
provide valuable insights, addressing them effectively is crucial for providing practitioners with
actionable solutions. Therefore, RQ3 focuses on identifying concrete solutions and best practices
currently employed by ML practitioners to navigate these challenges. Our aim is to compile
and disseminate these actionable solutions, and provide the community with a set of tools and
25https://github.com/Tencent/ncnn/pull/3648

, Vol. 1, No. 1, Article . Publication date: August 2024.

https://github.com/Tencent/ncnn/pull/3648

An Exploratory Study on Machine Learning Model Management 17

Table 6. Mapping model management challenges to model management categories.

Challenge Definition % of Occ.

Documentation
Maintenance

The continuous task of updating documentation to reflect model
changes, including new features, fixes, and performance metrics, while
also keeping tutorials and example models current.

15.3%

Bug
Management

The process of detecting, tracking, and rectifying bugs to ensure the
model or ML component functions as expected.

14.9%

Compatibility Ensuring the model or ML component aligns with its operational envi-
ronment, such as specific operating systems or programming language
versions.

12.9%

Dependency Handling external dependencies that might impact the model’s flexibil-
ity and performance, including updates, integrations, and addressing
vulnerabilities.

11.2%

Implemen-
tation

Dealing with the model or ML component’s present structure, particu-
larly if it lacks essential features or induces technical debt.

10.1%

Model
Performance

Addressing issues tied to prediction quality, encompassing benchmark-
ing, overfitting, underfitting, hyperparameter adjustments, and ongoing
monitoring.

7%

Data
Management

Overseeing the collection, organization, and processing of data for
model training, validation, and testing.

5.7%

Code
Performance

Optimizing the source code for speed and resource efficiency, focusing
on algorithmic enhancement, computational efficiency, memory man-
agement, and optimal hardware use.

4.8%

Resource
Constraints

Navigating limitations in computational resources, like processing ca-
pacity, memory, storage, and bandwidth. Challenges span training du-
rations, storage capacity, latency, scalability, and cost-effectiveness.

3.7%

Infrastructure Integrating and deploying models into functional systems. This in-
cludes setting up infrastructure, scaling, system integration, and ongo-
ing model monitoring.

3.3%

Testing Instituting rigorous tests to validate model behavior and accuracy, ad-
dressing issues like inconsistent tests, the lack of test benchmarks and
oracles, and managing extensive input data.

2.4%

Modularity Segmenting themodel andML components into distinct modules, which
may require reorganizing dependencies or incorporating new modules
for comprehensive solutions.

2.2%

Other Encompasses issues such as deciphering ambiguous error messages,
ensuring model validation accuracy, organizing project structures for
efficiency, guaranteeing model reproducibility, streamlining deploy-
ment processes, maintaining consistent code styling, and navigating
potential license conflicts.

6.5%

, Vol. 1, No. 1, Article . Publication date: August 2024.

18 Jasmine Latendresse, Samuel Abedu, Ahmad Abdellatif, and Emad Shihab

methodologies that have been proven effective. This will not only serve as a practical blueprint for
mitigating the identified challenges but also guide practitioners in adopting standardized practices
in model management. By providing these solutions, we enable practitioners to learn from others,
and ensure that they can implement effective strategies in their own processes.
Approach. To identify solutions addressing the challenges discussed in RQ2, we conduct an online
survey as described in Section 2.4. Recognizing that the length of a survey (i.e., number of questions)
can deter participation [18], we decide to cluster challenges into groups. Specifically, we group
challenges tied to Compatibility and Infrastructure, Implementation and Modularity, as
well as Resource Constraints and Code Performance into clusters. This led to a more concise
design encompassing 9 questions, representative of 12 challenges. Upon distributing our survey,
we received a total of 21 responses.

Table 7 provides a breakdown of the demographics of the 21 participants with varying back-
ground and levels of experience with ML systems. A majority of the participants are students
(52.4%), industry practitioners make up 38.1% of the sample, and researchers represent 9.5% of
the participants. Moreover, the majority of the participants have at least two years of experience
with ML systems, ensuring diversity across different levels of experience and backgrounds. It is
worth noting that we deliberately reached out to students to conduct our survey for a few spe-
cific reasons. First, we knew that most of these students have experience in developing machine
learning systems for at least a year (72.7%). Second, expecting busy industry developers to dedicate
significant time to our study would be challenging and would limit the depth of their insights
and thus, our analysis. Also, prior research suggests have shown that experienced students can
effectively represent professional developers, particularly when focusing on new technologies, as is
the case in our study [44, 45]. Thus, the real value for this study does not lie in the characteristics
of the participants, but rather in the insights they provide to build a set of actionable solutions to
concrete model management challenges.
Results. Table 8 presents the challenges, solutions derived from the literature, and the distribution
of selected solutions by participants. As we mentioned in the approach of this research question,
participants had the flexibility to opt for multiple answers for each question, and propose a solution
of their own. We marked the participant-proposed solutions with an asterisk ("*").

From the table, we observe that there is no single superior solution for each challenge. In other
words, practitioners employ various solutions to overcome the specified challenges. Overall, the
results show that there is a widespread preference for using hyperparameter optimization
techniques (66.7%) for Model Performance challenges. Hyperparameter optimization is essential
for achieving peak model performance [46], emphasizing the significance of fine-tuning these
parameters to optimize and enhance model outcomes in tackling these challenges.
Our results also show a repeated reference to tools and practices that ensure repli-

cability. For example, 66.7% and 52.4% of participants selected virtual environments and using
containers; respectively. These results highlight the growing importance of maintaining isolated
ML environments, a sentiment shared by practitioners [47]. One possible reason for the prevalence
of virtual environments among practitioners is to ensure the reproducibility of the ML model
regardless of the underlying system. Moreover, 47.6% of respondents also agreed that using data
versioning tools (e.g., DVC and MLFlow) to keep track of data changes was a viable solution to
the data management challenges. In addition to contributing towards reproducible ML, these tools
underscore a trend toward the automation of the ML pipeline, reflecting the industry shift towards
DevOps principles, where continuous integration, delivery, and deployment are critical [48].

Conversely, the survey results reveal that not all pre-listed solutions applied to the experiences
of the participants. Notably, the least chosen solution, with no participants advocating for it, is in
the Bug Management challenges, which is the construction of a function mapping between code in

, Vol. 1, No. 1, Article . Publication date: August 2024.

An Exploratory Study on Machine Learning Model Management 19

different programming languages. The need for a function mapping across different programming
languages is dependent on the development stack and practices of a given project or organization
as it relies on static analysis of low-level code [19]. For participants of our survey, their work might
not span multiple programming languages, or the potential complexity of such mappings may not
justify the benefits within their operational contexts. Another potential reason for this observation
is that organizations resort to develop ML applications using Python as it provides many OSS
libraries such as Scikit-Learn, TensorFlow, and PyTorch [49]. Another uncommon solution (4.8%
of respondents) is the use of efficient memory allocation for Resource Constraints challenges.
Efficient memory allocation involves planning the use of memory based on when data is needed
during training. The unpopularity of this solution may be due to the fact that ML tasks often deal
with diverse and dynamic data. The memory required can vary significantly based on the size and
complexity of the dataset or model being used. Thus, predicting and allocating the precise amount
of memory needed can be challenging.

Similarly, We find that certain challenges might not be experienced by all participants,
as they selected the "Does not apply" options various challenges. Interestingly, 23.8% of
participants do not face challenges related to Documentation Maintenance and Bug Management.
However, in our manual examination of the issues in RQ2, we find that these two challenges are
the most frequently encountered. The main reasons for this observation are 1) the RQ2 results
originate from OSS projects, where project maintainers prioritize comprehensive documentation
to encourage tool usage and contributions [50]. In fact, some OSS projects (e.g., Qiskit Machine
Learning26 and Scikit-Learn27) require contributors to update documentation before accepting their
contributions. 2) 52% of the participants, comprising both graduate and undergraduate students,
might not prioritize documentation in their projects as much as in public projects. Despite this,
documentation remains a critical aspect of model management, especially in collaborative settings,
as was shown by our results and previous work [51–53].

In light of this, we provided participants with the latitude to propose their own solutions. This
lead to the emergence of seven solutions that were not previously accounted for in our sug-
gested solutions. For instance, updating documentation with each release is a participant-proposed
solution for the Documentation Maintenance challenges and highlights the oft-neglected com-
mitment of keeping documentation aligned with the model’s evolution. Similarly, solutions such as
applying noise-handling algorithms for Data Management and using strict semantic versioning to
avert dependency conflicts reflect insights into challenges that may not be universally experienced
but are critical in certain contexts. Furthermore, the suggestion to batch-process data in small chunks
to overcome resource constraints may be effective in environments with limited computational
capacity. Another participant-proposed solution of validating service data with schema-based vali-
dation for Bug Management challenges allows for catching bugs related to data quality early in the
ML pipeline, which corroborates with the work of Breck et al. [31].

The results of our survey highlight a clear inclination among participants towards in-
tegrating tools for versioning data, models, and documentation. Participant-proposed
solutions highlight the industry’s rapid evolution, underscoring the need for replicability
through the use of virtual environments and containers.

26https://github.com/qiskit-community/qiskit-machine-learning/blob/main/CONTRIBUTING.md
27https://scikit-learn.org/dev/developers/contributing.html

, Vol. 1, No. 1, Article . Publication date: August 2024.

https://github.com/qiskit-community/qiskit-machine-learning/blob/main/CONTRIBUTING.md
https://scikit-learn.org/dev/developers/contributing.html

20 Jasmine Latendresse, Samuel Abedu, Ahmad Abdellatif, and Emad Shihab

Table 7. Background of participants in the survey.

Dimension Experience %

Background
Student 52.4%
Industry Practitioner 38.1%
Researcher 9.5%

ML Systems

1-2 years 38.1%
3-5 years 33.3%
<1 year 23.8%
>5 years 4.8%

Total participants 21

Fig. 1. Time Distribution to close GitHub Issues by Challenge.

4 DISCUSSION
In this section, we delve into the evaluation results to gain deeper insights into the complexity
of activities. Additionally, we provide a set of actionable recommendations for practitioners and
researchers to guide them in their ML model management.

, Vol. 1, No. 1, Article . Publication date: August 2024.

An Exploratory Study on Machine Learning Model Management 21

Table 8. Survey results for identifying solutions to the model management challenges. Participants were free
to select more than one solution per challenge. Annotated statements (*) represent new solutions suggested
by participants.

Challenge Solution % of Occ.

Documentation
Maintenance

Reviewing documentation as part of code review [20]. 61.9%
Publishing documentation as part of CI/CD to ensure example
notebooks are not broken [20].

28.6%

Versioning documentation as you version models [20]. 19%
Updating documentation with each release* [20]. 4.8%
Does not apply. 23.8%

Data
Management

Using data versioning tools to keep track of data changes [7]. 47.6%
Including data anomaly detection in the data preprocessing
pipeline [31, 54].

42.9%

Data augmentation (i.e., artificially increasing the size of training
data) [55].

23.8%

Apply noise-handling algorithms*. 4.8%
Does not apply. 23.8%

Bug
Management

Adopting metamorphic testing (i.e., verify test results consis-
tency with multiple inputs) [56].

61.9%

Using standard test suites to mimic common bugs (i.e., faultload
benchmarks) [57].

28.6%

Validate service data with schema-based validation*. 4.8%
Creating a function mapping between code in different program-
ming languages to aid static code analysis tools in detecting
bugs [19].

0%

Does not apply. 23.8%

Model
Performance

Using hyperparameter optimization techniques to find optimal
hyperparameter values that yield the best performance [46].

66.7%

Continuously monitor model performance in production envi-
ronment to detect and fix model drift [58].

52.4%

Implement transfer learning [59]. 19%
Exercise caution when partitioning data into training, testing,
and validation sets*.

4.8%

Does not apply. 14.3%

Dependency
Management

Using virtual environments to prevent dependency conflict with
other services [47].

66.7%

Selecting dependencies that are self-contained and avoid relying
on a large number of dependencies [26].

33.3%

Using dependency management tools (e.g., Dependabot) [60]. 19%
Using strict semantic versioning to avoid breaking changes*. 4.8%
Does not apply. 14.3%

, Vol. 1, No. 1, Article . Publication date: August 2024.

22 Jasmine Latendresse, Samuel Abedu, Ahmad Abdellatif, and Emad Shihab

Compatibility &
Infrastructure

Using containers (e.g., Docker) to deploy the model and keep
environment consistent [60].

52.4%

Implement auto-scaling (i.e., adjusting resources based on
demand) to manage varying levels of system solicitation at
different times [61].

38.1%

Implementing CI/CD to run on one or multiple operating
systems and integrating continuous training (CT) [48, 62].

23.8%

Monitor the resource usage of the model and use CI/CD for
the one OS (i.e., the deployment server)*.

4.8%

Does not apply. 23.8%

Implementation
& Modularity

Following design patterns for ML applications (e.g., ensuring
reproducibility by setting seeds or using checkpoints) [26].

47.6%

Implement system functionalities into independent modular
components [63].

42.9%

Using versioning tools (e.g., DVC and MLFlow) to keep track
of data and configurations [7].

38.1%

Re-training existing models on new features to learn correc-
tions, as opposed to creating cascading models [26].

28.6%

Does not apply. 19%

Resource Constraints
& Code Performance

Optimize training and inference code to reduce unnecessary
computations [64].

47.6%

Perform distributed training (i.e., parallelizing model training
across multiple machines) [65].

38.1%

Use transfer learning and/or incremental learning techniques
to reduce computational load [59].

19%

Batch processing of small chunks*. 4.8%
Efficient memory allocation [64]. 4.8%
Does not apply. 28.6%

Testing

Use different types of tests to evaluate different functionalities
of the system [66].

52.4%

Use statistical tests (e.g., Kolmogorov-Smirnov test) to detect
data drift [67].

23.8%

Integrate test coverage metrics [66]. 19%
Does not apply. 19%

4.1 The Complexity of Model Management Activities
In RQ2, we identified the challenges associated with model management activities. The complexity
varies across these challenges due to differences in technical requirements, varying degrees of
expertise needed to address them, and the diverse environments in which models are deployed and
operated. Understanding the complexity of these challenges can aid practitioners in prioritizing
their work by considering the areas where the most difficult challenges arise when managing their

, Vol. 1, No. 1, Article . Publication date: August 2024.

An Exploratory Study on Machine Learning Model Management 23

models. Therefore, in this section, our goal is to gauge the complexity of each challenge. For this,
we measure the time taken to resolve the GitHub issues used to identify the challenges in RQ2.
This metric has been used in previous studies to assess the complexity of resolving issues [68–70].

Figure 1 presents the closure time distributions for each challenge. From the figure, it’s evident that
challenges specific to machine learning (ML), such as Model Performance and Data Management,
exhibit among the longest closure times. For example, issues related to Model Performance take a
median time of 13 days to close. ML performance-related issues often have deep-seated roots within
the model’s architecture, algorithms, or the data used in its training. Identifying the exact cause of
a performance decline necessitates delving into them, which can be time-consuming. Moreover,
rectifying ML performance issues often demands a more comprehensive approach. This involves
retraining the model using refined datasets, adjusting its hyperparameters, or reconsidering the
choice of algorithm, and ensure that the solution enhances a model’s performance requires rigorous
testing and validation, which is also a time-intensive process.

Unsurprisingly, Data Management stands out as one of the most complex challenges in terms of
closure time. This is because data serves as the backbone of any ML system, and the model’s quality
is fundamentally rooted in the quality of the data used for its training. Consequently, practitioners
invest significant time in preprocessing and cleaning the data to guarantee its high quality [39]. Our
findings suggest that the research community should intensify efforts in developing approaches and
tools that aid practitioners in managing their models, especially in enhancing their performance.
Another challenge that is of significant complexity is Resource Constraints, which is un-

derscored by the presence of outliers indicating prolonged resolution times. ML workflows are
resource-intensive and require substantial computational power and memory, often exacerbated
by the size of datasets and complexity of models. In particular, the prolonged resolution times
of Resource Constraints may reflect challenges that are often faced by open-source project
contributors who rely on consumer-grade hardware. In such context, contributors to open-source
ML projects may seek to optimize performance within the constraints of limited computational
resources. Notably, an outlier that persisted for 908 days, dealt with an inefficiency in data stor-
age causing significant storage overhead.28 The issue in question was ultimately closed with a
resolution of "unlikely to be fixed". Our findings shed light on the need for resource-efficient ML
implementations and tools that are accessible to a broader audience.

4.2 Implications for Practitioners
Based on our analysis and findings of each research question, we list the implications for practi-
tioners to help them better manage their ML models.
Develop Centralized Platforms that Facilitate Collaboration. The results of RQ2 and RQ3
show that there is a significant gap in the ecosystem for centralized, collaborative platforms that
facilitate comprehensive model management and experiment tracking. Our findings are aligned
with prior work that emphasized the necessity of tracking a model across all phases of its lifecycle,
including detailed logging of metrics for training and validation [5, 6]. Yet, our analysis uncovered
very minimal evidence of experiment tracking within the studied projects. This might stem from
the inherent characteristics of the ML workflow, but it highlights a critical challenge. GitHub,
despite its widespread use for hosting open-source ML projects, does not inherently facilitate the
tracking and sharing of experimental workflows essential for ML development. Experiments in
ML are frequently run locally and, as we observed during the labeling process in RQ1, result in
large, infrequent commits that obscure the developmental trajectory of models when viewed on
traditional collaborative platforms [39]. To address these challenges, we recommend that developers
28https://github.com/BVLC/caffe/issues/1321

, Vol. 1, No. 1, Article . Publication date: August 2024.

https://github.com/BVLC/caffe/issues/1321

24 Jasmine Latendresse, Samuel Abedu, Ahmad Abdellatif, and Emad Shihab

and organizations: (1) engage with collaborative platforms in a more granular manner, such as by
making smaller, more frequent commits, allowing for a clearer and more continuous history of
model evolution, and (2) ensure that detailed documentation of each model iteration is integrated
and regularly synchronized with model modifications and versions.
Emphasize and Prioritize Robust Documentation Practices. Effective documentation is one
of the cornerstones of a collaborative ML environment as it records each iteration of the model,
every decision made, and the rationale behind changes. This not only facilitates transparency
but also aids in attracting new contributors, providing them with a clear history of the model’s
development [51–53]. Despite the importance of documentation, our findings of RQ2 show that
maintaining it is among the most challenging activities of model management. Thus, we recommend
practitioners incorporate documentation as an integral part of the development process, not as an
afterthought. This can be achieved by: (1) establishing documentation protocols and standards that
detail what needs to be documented at each stage of the model lifecycle (e.g., documentation needs
to be present with every pull request), (2) utilizing version control systems to track changes in
documentation alongside code changes to ensure that they are always in sync, and (3) establishing
documentation as a core component of the model management process, akin to coding and testing.
Implement Resource Allocation Strategies for Complex ML Tasks. Our analysis in RQ2
reveals unpredictability in issue resolution times (ranging from less than a day to 1,462 days),
particularly for complex ML tasks from which emerged significant outliers, impacting overall
project timelines and resource planning [69]. Proper resource allocation is important for managing
complex ML tasks to improve project timelines and resource planning. In other words, by allocating
additional time and resources to complex tasks like data management, practitioners can more
effectively anticipate and address potential delays in key areas of their ML applications, allowing for
a more efficient allocation of resources. This not only pertains to human resources but also to the
management of computational resources, which are often crucial in collaborative and open-source
environments as it can directly affect the reproducibility of experimental results [51].

4.3 Implications for Researchers.
Based on our analysis and findings of each research question, we list the implications for researchers
to guide future investigations into challenging areas of ML model management.
TheNeed for ImprovedDocumentation Strategies. In RQ1, we find that the role of documentation-
related activities emerges as particularly significant. In RQ2, we pinpoint documentation main-
tenance as one of the most challenging aspects of model management. The consistent emphasis
on documentation across different studies, including our study, highlights the need for deeper
investigation into the underlying reasons for this challenge from the research community [51–53].
For example, why maintaining accurate and up-to-date documentation is especially problematic in
this field? What unique obstacles do ML practitioners face when updating documentation? How do
the dynamic nature of ML models and the frequent updates to data sets complicate documentation
efforts?

Answering these questions is crucial for developing more effective documentation strategies that
are tailored to the complexities of ML projects. The recent explosion of Large Language Models
(LLM) and their success in different software engineering tasks presents a unique opportunity for
researchers to study the potential of these technologies in enhancing documentation practices. By
studying the automation of the documentation process with LLMs, researchers can help ensure
that documentation evolves in tandem with model and data changes, minimizing discrepancies and
enhancing model management efficacy for practitioners.

, Vol. 1, No. 1, Article . Publication date: August 2024.

An Exploratory Study on Machine Learning Model Management 25

Develop Automated Compatibility Check. One of the most recurring model management
challenges identified in RQ2 is ensuring that the model or ML component aligns with its opera-
tional environment, such as specific operating systems or programming language versions. This
is particularly significant given how rapidly software and hardware environments are evolving.
To address this, researchers should focus on automating the ML pipeline by creating automated
frameworks that can simulate various deployment scenarios and enhancing versioning tools with a
compatibility requirements tracker alongside model updates.
Managing External Dependencies in ML Projects. Unlike traditional software, ML systems
often integrate a diverse array of data sources, libraries, and tools, each of which may evolve
independently [8]. This creates unique challenges of dependency management, where changes
in one element can affect the stability of the entire system. This complexity significantly affects
the reliability and performance of ML models, especially due to their non-modular nature, as
observed in RQ2. To help practitioners, future research should focus on developing methodologies
that allows to isolate components within ML systems. Such methodologies should include the
adoption of containerization technologies (e.g., Docker) to encapsulate dependencies, and the use
of microservices architecture to modularize processes.
Enhancing Model Reproducibility. In RQ1 and RQ2, we highlight that discrepancies in model
versioning, experiment tracking, and documentation are obstacles to replicating and validating
results of ML models. In RQ3, the use of versioning tools was underscored by respondents as
potential solutions for data management and modularity challenges. However, currently available
tools do not scale to the complexity of ML systems [71, 72]. Thus, empirical studies should be
conducted to evaluate and enhance the efficacy and capabilities of versioning tools in the context
of ML systems.

5 RELATEDWORKS
In this section, we discuss the existing literature related to model management approaches and
challenges.

5.1 Model Management and Challenges
Previous studies have laid foundational work in the field of model management [4–6, 8, 73–75].
Vartak et al. [5] define model management as the process of tracking a model across all phases of its
life cycle. They discuss some challenges of model management that include a lack of standardized
practices and agreed upon methods amongst practitioners. To address these challenges, the authors
propose ModelDB, a tool to automate model management tasks [9]. Andrei et al. [4] discussed
challenges specific to deploying ML in production and stages of MLmodel deployment. The problem
is that the definition of model management remains unclear and that the processes implemented
by model management tools is black-box.
Schelter et al. [6] define model management as "the training, maintenance, deployment, moni-

toring, organization, and documentation of ML models” and identify challenges associated with
these processes in four selected use cases: time series forecasting, missing value imputation, con-
tent moderation, and automating model metadata tracking [6]. Their discussion categorized the
challenges into three groups: conceptual challenges, which pertain to the lack of clear definitions
and standards in the field; data management challenges, which focuses on issues about abstractions
used in the ML pipelines, and engineering challenges, which involve technical complexities of
implementing and maintaining ML systems. Notably, the authors highlight the challenge of model
validation, discussing the fact that machine learning models are dynamic and highly depend on
data, methods, and dependencies. As such, a single change in one of components of the system
leads to re-validating the model’s performance, which corroborates with our findings in RQ2,

, Vol. 1, No. 1, Article . Publication date: August 2024.

26 Jasmine Latendresse, Samuel Abedu, Ahmad Abdellatif, and Emad Shihab

where we discuss the challenges of isolating changes given the non-modular nature of ML systems.
Furthermore, the authors report on the importance of re-evaluating the model’s performance
with the same training, test and validation set, which we further emphasize in the results of RQ2
pertaining to the challenges of documenting changes in ML pipelines. However, while this work
provides a foundational understanding of model management challenges, their analysis is primarily
rooted in the context of four specific ML use cases while ours focuses on a larger, more diverse set
of projects. This study provides valuable insights, but may not fully capture the broader range of
challenges encountered in newer ML environments that have emerged with recent technological
advancements in the field. Our work builds upon and extends their framework by developing a
comprehensive taxonomy of ML model management activities, based on the analysis of practical,
real world ML projects. Additionally, we offer practitioner-informed solutions for each identified
challenge, something that Schelter et al. [6] touched upon but did not expand fully.

Chen et al. further refine the challenges of deploying ML-based software by presenting a taxon-
omy of ML development challenges [73]. In comparison, our study focuses on challenges specific
to model management, which have not been clearly defined in the current literature.

Building upon insights from Isbell et al. [76], who discuss the adaptation of established software
engineering practices for ML systems, our study integrates these practices within our taxonomy,
addressing the critical need for standardized procedures in ML model management. Isbell et al. [76]
emphasize the importance of integrating software engineering basics such as testing, documentation,
and version control into the ML workflow, which aligns with our findings on the challenges in
documentation maintenance and the need for robust versioning tools.
Moreover, extending the discussion on the black-box nature of Ml systems by Cao et al. [77],

our work contributes to understanding the explainability within model management tasks. Cao et
al. highlight the challenges posed by the opaque decision-making processes in ML-based systems,
which underscores the need for explainable approaches that are crucial for validating and auditing
ML models. This is especially true in collaborative environments, and directly informs the design
of our taxonomy.

Furthermore, the paper by Wang et al. [78]emphasizes the impact of machine and deep learning
on software engineering practices by cataloging multiple applications ranging from code analysis
to project management. This integration of ML in SE highlights the urgent need for robust model
management practices that not only handle the lifecycle of MLmodels but also adapt to the changing
requirements of software engineering processes, which our work aims to address by proposing
model management strategies.

More recently, Nahar et al. conducted an extensive literature review, providing a meta-summary
study of 50 papers involving 4,758 practitioners to report on the most commonly encountered
challenges in the field of ML [8]. Notably, the authors report that ML adds substantial complexity
with many, often implicit data and tooling dependencies, and entanglements due to a lack of
modularity, which further corroborates with our findings of RQ2. Moreover, the authors observe
that the development of ML systems is often ad hoc, lacking well-defined processes, which further
motivates the need for a clear and structured taxonomy of model management processes.

5.2 Automation in ML Pipelines
Tools and approaches for model management can be found in the literature. Vartak et al. proposed
ModelDB, the first open-source model management system [9]. Chen et al. present MLflow, a
popular open-source platform for managing the development of ML components [79]. Repositories
using MLflow tend to expose issues related to ML model management in each phase of the machine
learning lifecycle. Weber et al. propose MMP, a model management tool specific for Industry 4.0
environments [80].

, Vol. 1, No. 1, Article . Publication date: August 2024.

An Exploratory Study on Machine Learning Model Management 27

Idowu et al. present a feature-based survey of 18 state-of-practice and 12 state-of-research tools
supporting ML asset management [24]. The authors discuss that developing ML systems requires
the management of a greater variety of asset types than traditional systems, including models. Also,
the authors argue that ML asset management is an essential discipline when building ML systems,
which further motivates our goal to focus on model management.

The problem is that while tools and frameworks exist to automatically manage models, there is
still a lack of understanding and agreement on well-defined model management practices. Thus, in
this work, we offered a software engineering perspective on ML model management and proposed
a taxonomy of model management activities. We also highlighted task specifications and challenges
related to model management and provide practical solutions to the identified challenges by
surveying industry practitioners and academic researchers.

6 THREATS TO VALIDITY
Threats to internal validity considers the experimenter’s bias and errors. Our method of analysis
largely depends on manual inspection and labeling. Thus, a potential threat to the validity of our
study is the subjective nature of categorizing the model management activities. This subjectivity
might affect the reproducibility of our classification schema. To mitigate this risk, two authors
independently categorized the activities and calculated the Cohen’s Kappa coefficient and achieved
substantial agreement. Discrepancies in labeling were meticulously resolved through consensus
among all authors.
Our method of identifying commits that modify models is based on a keyword list derived

from related literature, expert knowledge, and a thorough manual review of the structure of the
repositories from our dataset. This approach carries the risk of not encompassing all relevant project
structures, potentially overlooking some source files containing model code. To address this, our
keyword list includes various forms of ML terminologies, such as "randomforest", "random_forest",
and "randomforest". Furthermore, we have implemented a manual validation process to ensure that
the files identified indeed contain model source code by inspecting the source code of each file in
the selected commits.
Furthermore, in our sampling of GitHub issues, we excluded those perceived as unrelated to

ML models and components. However, there is no guarantee that all categorized issues pertain
exclusively to ML components. To mitigate this, each issue’s associated pull request and comments
were manually reviewed and analyzed for relevance.
Threats to External validity considers the generalizability of the findings. Our study focuses
on open-source projects hosted on GitHub, which may not fully represent the wider spectrum of
projects, especially proprietary ones. To mitigate this, we employed established best practices in
mining software repositories, selecting active, popular, and mature ML projects [12, 13]. Moreover,
our dataset contains projects that have already been studied in the literature and encompass a
diverse range of ML projects, ensuring the inclusion of well-known repositories like Facesweap
and Tensorflow [11]. This diverse selection aims to broaden the applicability and relevance of our
findings across different ML project contexts.
Moreover, we surveyed 21 participants to gain insights into the practical challenges and solu-

tions in model management as discussed in RQ3. Thus, the participants might not capture the
extensive range of experiences and opinions in the field of model management. Thus, we made
concerted efforts to include a wide diversity of participants, from industry practitioners to academic
researchers to ensure a broad spectrum of perspectives Furthermore, our survey results might be
more reflective of the views and experiences of those who chose to participate, rather than the
entire population of ML professionals. To mitigate this, we designed our survey with predefined
options, while also allowing respondents the opportunity to share their personal insights or indicate

, Vol. 1, No. 1, Article . Publication date: August 2024.

28 Jasmine Latendresse, Samuel Abedu, Ahmad Abdellatif, and Emad Shihab

if the provided options were not relevant to their specific expertise. Also, while less than half have
over five years of experience, this reflects the evolving nature of the field and the growing adoption
of ML by practitioners with diverse backgrounds. We acknowledge that experience can be a factor
influencing perceptions of model management challenges. Future research could specifically target
senior-level developers to investigate potential differences in model management practices among
various experience levels.

Another potential threat to the external validity of our findings is related to the saturation
of the taxonomy of model management activities we have proposed. Particularly, whether the
inclusion of additional repositories might lead to the emergence of new categories within our
taxonomy. Nevertheless, the used ML projects in our study are used in similar prior work [11, 81, 82].
Furthermore, we encourage future research to re-evaluate and expand our taxonomy with new
data sources or as new practices become prevalent.

7 CONCLUSION
In this work, we presented an extensive investigation into the management of ML models, identify-
ing key activities and challenges in this domain. Our analysis, grounded in the manual inspection
and labeling of the commits of 227 ML repositories, reveals the dynamic nature of model manage-
ment and underscores the necessity for standardized practices in this field, especially in collaborative
settings. We proposed a taxonomy of 16 model management activities, which offers clarity and
structure to a field that has, until now, largely relied on ad hoc approaches. This taxonomy, curated
from analyzing real-world projects, provides a framework that can be applied in both academic
and industrial contexts for the effective management of ML models. Our findings also highlight
the growing need for automating the ML pipeline, particularly emphasizing the importance of
versioning for data, models, and documentation. In line with this, we observed a significant focus
on replicability, with participants in our survey shedding light on the value of virtual environments
and containers in achieving consistent and reliable ML model management and deployment. Based
on our observations, we make several recommendations, notably that when using collaborative
platforms such as GitHub, developers should keep their commits atomic and push changes more
incrementally, allowing for more reproducible models. Recognizing the connection of ML model
management with broader ML software management, future work should also explore the evolution
and management of ML components within software systems to extend our taxonomy to cover
these aspects. Furthermore, we plan (and encourage others) to develop approaches and tools to
automate the model management pipeline and enable better monitoring of model changes within
collaborative platforms. This is important because understanding the connection between model
management and broader software management can lead to more comprehensive and effective
strategies for maintaining ML systems. Our study is the first step toward achieving this, laying the
groundwork for future research and development in this area.

REFERENCES
[1] D. Gonzalez, T. Zimmermann, and N. Nagappan, “The state of the ml-universe: 10 years of artificial intelligence &

machine learning software development on github,” in Proceedings of the 17th International Conference on Mining
Software Repositories, 2020, pp. 431–442.

[2] S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Nagappan, B. Nushi, and T. Zimmermann, “Software
engineering for machine learning: A case study,” in 2019 IEEE/ACM 41st International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP). IEEE, 2019, pp. 291–300.

[3] M. Dilhara, A. Ketkar, and D. Dig, “Understanding software-2.0: A study of machine learning library usage and
evolution,” ACM Transactions on Software Engineering and Methodology (TOSEM), vol. 30, no. 4, pp. 1–42, 2021.

[4] A. Paleyes, R.-G. Urma, and N. D. Lawrence, “Challenges in deploying machine learning: A survey of case studies,”
ACM Comput. Surv., 2022.

, Vol. 1, No. 1, Article . Publication date: August 2024.

An Exploratory Study on Machine Learning Model Management 29

[5] M. Vartak, H. Subramanyam, W.-E. Lee, S. Viswanathan, S. Husnoo, S. Madden, and M. Zaharia, “Modeldb: a system
for machine learning model management,” in Proceedings of the Workshop on Human-In-the-Loop Data Analytics, 2016,
pp. 1–3.

[6] S. Schelter, F. Biessmann, T. Januschowski, D. Salinas, S. Seufert, and G. Szarvas, “On challenges in machine learning
model management,” 2015.

[7] S. Idowu, D. Strüber, and T. Berger, “Asset management in machine learning: State-of-research and state-of-practice,”
ACM Computing Surveys, vol. 55, no. 7, pp. 1–35, 2022.

[8] N. Nahar, H. Zhang, G. Lewis, S. Zhou, and C. Kästner, “A meta-summary of challenges in building products with ml
components–collecting experiences from 4758+ practitioners,” arXiv preprint arXiv:2304.00078, 2023.

[9] M. Vartak and S. Madden, “Modeldb: Opportunities and challenges in managing machine learning models.” IEEE Data
Eng. Bull., vol. 41, no. 4, pp. 16–25, 2018.

[10] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and D. Damian, “An in-depth study of the promises
and perils of mining github,” Empirical Software Engineering, vol. 21, no. 5, pp. 2035–2071, 2016.

[11] D. E. Rzig, F. Hassan, C. Bansal, and N. Nagappan, “Characterizing the usage of ci tools in ml projects,” in Proceedings
of the 16th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, 2022, pp. 69–79.

[12] G. Gousios and D. Spinellis, “Mining software engineering data from github,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C). IEEE, 2017, pp. 501–502.

[13] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating github for engineered software projects,” Empirical
Software Engineering, vol. 22, no. 6, pp. 3219–3253, 2017.

[14] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and D. Damian, “The promises and perils
of mining github,” in Proceedings of the 11th Working Conference on Mining Software Repositories, ser. MSR
2014. New York, NY, USA: Association for Computing Machinery, 2014, p. 92–101. [Online]. Available:
https://doi.org/10.1145/2597073.2597074

[15] H. Borges and M. T. Valente, “What’s in a github star? understanding repository starring practices in a social coding
platform,” Journal of Systems and Software, vol. 146, pp. 112–129, 2018.

[16] S. Biswas, M. Wardat, and H. Rajan, “The art and practice of data science pipelines: A comprehensive study of data
science pipelines in theory, in-the-small, and in-the-large,” in Proceedings of the 44th International Conference on
Software Engineering, 2022, pp. 2091–2103.

[17] S. Dutta, A. Shi, R. Choudhary, Z. Zhang, A. Jain, and S. Misailovic, “Detecting flaky tests in probabilistic and machine
learning applications,” in Proceedings of the 29th ACM SIGSOFT international symposium on software testing and analysis,
2020, pp. 211–224.

[18] B. A. Kitchenham and S. L. Pfleeger, Personal Opinion Surveys. London: Springer London, 2008, pp. 63–92. [Online].
Available: https://doi.org/10.1007/978-1-84800-044-5_3

[19] H. Guan, Y. Xiao, J. Li, Y. Liu, and G. Bai, “A comprehensive study of real-world bugs in machine learning model
optimization,” in Proceedings of the International Conference on Software Engineering, 2023.

[20] S. Team, “Documentation as code: Why you need it &; how to get started,” Aug 2023. [Online]. Available:
https://swimm.io/learn/code-documentation/documentation-as-code-why-you-need-it-and-how-to-get-started

[21] A. Serban and J. Visser, “Adapting software architectures to machine learning challenges,” in 2022 IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 2022, pp. 152–163.

[22] C. Hill, R. Bellamy, T. Erickson, and M. Burnett, “Trials and tribulations of developers of intelligent systems: A field
study,” in 2016 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC). IEEE, 2016, pp.
162–170.

[23] S. Hillemacher, N. Jäckel, C. Kugler, P. Orth, D. Schmalzing, and L. Wachtmeister, “Artifact-based analysis for the
development of collaborative embedded systems,” in Model-Based Engineering of Collaborative Embedded Systems.
Springer, 2021, pp. 315–331.

[24] S. Idowu, D. Strüber, and T. Berger, “Asset management in machine learning: State-of-research and state-of-practice,”
ACM Comput. Surv., 2022. [Online]. Available: https://doi.org/10.1145/3543847

[25] J. L. Fleiss and J. Cohen, “The equivalence of weighted kappa and the intraclass correlation coefficient as measures of
reliability,” Educational and Psychological Measurement, vol. 33, no. 3, pp. 613–619, 1973.

[26] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner, V. Chaudhary, M. Young, J.-F. Crespo, and D. Dennison,
“Hidden technical debt in machine learning systems,” Advances in neural information processing systems, vol. 28, 2015.

[27] S. Herbold and T. Haar, “Smoke testing for machine learning: simple tests to discover severe bugs,” Empirical Software
Engineering, vol. 27, no. 2, p. 45, 2022.

[28] H. B. Braiek and F. Khomh, “On testing machine learning programs,” Journal of Systems and Software, vol. 164, p.
110542, 2020.

[29] H. Liu, S. Eksmo, J. Risberg, and R. Hebig, “Emerging and changing tasks in the development process for machine
learning systems,” in Proceedings of the international conference on software and system processes, 2020, pp. 125–134.

, Vol. 1, No. 1, Article . Publication date: August 2024.

https://doi.org/10.1145/2597073.2597074
https://doi.org/10.1007/978-1-84800-044-5_3
https://swimm.io/learn/code-documentation/documentation-as-code-why-you-need-it-and-how-to-get-started
https://doi.org/10.1145/3543847

30 Jasmine Latendresse, Samuel Abedu, Ahmad Abdellatif, and Emad Shihab

[30] S. Zdanowska and A. S. Taylor, “A study of ux practitioners roles in designing real-world, enterprise ml systems,” in
Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, 2022, pp. 1–15.

[31] E. Breck, N. Polyzotis, S. Roy, S. Whang, and M. Zinkevich, “Data validation for machine learning.” in MLSys, 2019.
[32] A. Arpteg, B. Brinne, L. Crnkovic-Friis, and J. Bosch, “Software engineering challenges of deep learning,” in 2018 44th

euromicro conference on software engineering and advanced applications (SEAA). IEEE, 2018, pp. 50–59.
[33] M. Haakman, L. Cruz, H. Huijgens, and A. van Deursen, “Ai lifecycle models need to be revised. an exploratory study

in fintech,” arXiv preprint arXiv:2010.02716, 2020.
[34] W. Hummer, V. Muthusamy, T. Rausch, P. Dube, K. El Maghraoui, A. Murthi, and P. Oum, “Modelops: Cloud-based

lifecycle management for reliable and trusted ai,” in 2019 IEEE International Conference on Cloud Engineering (IC2E).
IEEE, 2019, pp. 113–120.

[35] G. A. Lewis, I. Ozkaya, and X. Xu, “Software architecture challenges for ml systems,” in 2021 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE, 2021, pp. 634–638.

[36] S. Shankar, R. Garcia, J. M. Hellerstein, and A. G. Parameswaran, “Operationalizing machine learning: An interview
study,” arXiv preprint arXiv:2209.09125, 2022.

[37] A. Bäuerle, Á. A. Cabrera, F. Hohman, M. Maher, D. Koski, X. Suau, T. Barik, and D. Moritz, “Symphony: Composing
interactive interfaces for machine learning,” in Proceedings of the 2022 CHI Conference on Human Factors in Computing
Systems, 2022, pp. 1–14.

[38] V. Golendukhina, V. Lenarduzzi, and M. Felderer, “What is software quality for ai engineers? towards a thinning of the
fog,” in Proceedings of the 1st International Conference on AI Engineering: Software Engineering for AI, 2022, pp. 1–9.

[39] M. Kim, T. Zimmermann, R. DeLine, and A. Begel, “Data scientists in software teams: State of the art and challenges,”
IEEE Transactions on Software Engineering, vol. 44, no. 11, pp. 1024–1038, 2017.

[40] N. Nahar, S. Zhou, G. Lewis, and C. Kästner, “Collaboration challenges in building ml-enabled systems: Communication,
documentation, engineering, and process,” in Proceedings of the 44th International Conference on Software Engineering,
2022, pp. 413–425.

[41] Z. Wan, X. Xia, D. Lo, and G. C. Murphy, “How does machine learning change software development practices?” IEEE
Transactions on Software Engineering, vol. 47, no. 9, pp. 1857–1871, 2019.

[42] A. Serban, K. van der Blom, H. Hoos, and J. Visser, “Adoption and effects of software engineering best practices in
machine learning,” in Proceedings of the 14th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM), 2020, pp. 1–12.

[43] M. Saidur Rahman, F. Khomh, A. Hamidi, J. Cheng, G. Antoniol, and H. Washizaki, “Machine learning application
development: Practitioners’ insights,” arXiv e-prints, pp. arXiv–2112, 2021.

[44] I. Salman, A. T. Misirli, and N. Juristo, “Are students representatives of professionals in software engineering experi-
ments?” in 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, vol. 1, 2015, pp. 666–676.

[45] M. Höst, B. Regnell, and C. Wohlin, “Using students as subjects—a comparative study of students and professionals in
lead-time impact assessment,” Empirical Software Engineering, vol. 5, pp. 201–214, 2000.

[46] M. Feurer and F. Hutter, “Hyperparameter optimization,” Automated machine learning: Methods, systems, challenges, pp.
3–33, 2019.

[47] A. Grigorev, “Deploying machine learning models, part 3: managing dependencies,” Jun 2021. [Online]. Available:
https://freecontent.manning.com/deploying-machine-learning-models-part-3-managing-dependencies/

[48] I. Karamitsos, S. Albarhami, and C. Apostolopoulos, “Applying devops practices of continuous automation for machine
learning,” Information, vol. 11, no. 7, p. 363, 2020.

[49] OpenSourceForU, “Why python is popular for machine learning implementations,” 2021, accessed: 2023-11-09. [Online].
Available: https://www.opensourceforu.com/2021/02/why-python-is-popular-for-machine-learning-implementations/

[50] R. Watson, M. Stamnes, J. Jeannot-Schroeder, and J. H. Spyridakis, “Api documentation and software community
values: a survey of open-source api documentation,” in Proceedings of the 31st ACM international conference on Design
of communication, 2013, pp. 165–174.

[51] S. Sonnenburg, M. L. Braun, C. S. Ong, S. Bengio, L. Bottou, G. Holmes, Y. LeCunn, K.-R. Muller, F. Pereira, C. E.
Rasmussen et al., “The need for open source software in machine learning,” 2007.

[52] W. Bangerth and T. Heister, “What makes computational open source software libraries successful?” Computational
Science & Discovery, vol. 6, no. 1, p. 015010, 2013.

[53] Z. Yang, C. Wang, J. Shi, T. Hoang, P. Kochhar, Q. Lu, Z. Xing, and D. Lo, “What do users ask in open-source ai
repositories? an empirical study of github issues,” arXiv preprint arXiv:2303.09795, 2023.

[54] S. García, J. Luengo, F. Herrera, S. García, J. Luengo, and F. Herrera, “Data preparation basic models,” Data Preprocessing
in Data Mining, pp. 39–57, 2015.

[55] C. Shorten, T. M. Khoshgoftaar, and B. Furht, “Text data augmentation for deep learning,” Journal of big Data, vol. 8,
pp. 1–34, 2021.

, Vol. 1, No. 1, Article . Publication date: August 2024.

https://freecontent.manning.com/deploying-machine-learning-models-part-3-managing-dependencies/
https://www.opensourceforu.com/2021/02/why-python-is-popular-for-machine-learning-implementations/

An Exploratory Study on Machine Learning Model Management 31

[56] M. Leotta, D. Olianas, and F. Ricca, “A large experimentation to analyze the effects of implementation bugs in machine
learning algorithms,” Future Generation Computer Systems, vol. 133, pp. 184–200, 2022.

[57] M. M. Morovati, A. Nikanjam, F. Khomh, and Z. M. Jiang, “Bugs in machine learning-based systems: a faultload
benchmark,” Empirical Software Engineering, vol. 28, no. 3, p. 62, 2023.

[58] Jun 2023. [Online]. Available: https://developer.nvidia.com/blog/a-guide-to-monitoring-machine-learning-models-in-
production/

[59] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer learning,” Journal of Big data, vol. 3, no. 1, pp. 1–40,
2016.

[60] B. John, “Ml model packaging [the ultimate guide],” May 2023. [Online]. Available: https://neptune.ai/blog/ml-model-
packaging

[61] M. Imdoukh, I. Ahmad, and M. G. Alfailakawi, “Machine learning-based auto-scaling for containerized applications,”
Neural Computing and Applications, vol. 32, pp. 9745–9760, 2020.

[62] [Online]. Available: https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-
machine-learning

[63] S. Mittal, Y. Bengio, and G. Lajoie, “Is a modular architecture enough?” Advances in Neural Information Processing
Systems, vol. 35, pp. 28 747–28 760, 2022.

[64] J. Zhang, S. H. Yeung, Y. Shu, B. He, and W. Wang, “Efficient memory management for gpu-based deep learning
systems,” arXiv preprint arXiv:1903.06631, 2019.

[65] S. Mittal and S. Vaishay, “A survey of techniques for optimizing deep learning on gpus,” Journal of Systems Architecture,
vol. 99, p. 101635, 2019.

[66] D. Marijan, A. Gotlieb, and M. K. Ahuja, “Challenges of testing machine learning based systems,” in 2019 IEEE
international conference on artificial intelligence testing (AITest). IEEE, 2019, pp. 101–102.

[67] S. Ackerman, O. Raz, M. Zalmanovici, and A. Zlotnick, “Automatically detecting data drift in machine learning
classifiers,” arXiv preprint arXiv:2111.05672, 2021.

[68] S. Panichella, G. Canfora, and A. Di Sorbo, ““won’t we fix this issue?” qualitative characterization and automated
identification of wontfix issues on github,” Information and Software Technology, vol. 139, p. 106665, 2021.

[69] R. Kikas, M. Dumas, and D. Pfahl, “Using dynamic and contextual features to predict issue lifetime in github projects,”
in Proceedings of the 13th International Conference on Mining Software Repositories, 2016, pp. 291–302.

[70] N. Bühlmann and M. Ghafari, “How do developers deal with security issue reports on github?” in Proceedings of the
37th ACM/SIGAPP Symposium on Applied Computing, 2022, pp. 1580–1589.

[71] Y. Zhao, “Mlops and data versioning in machine learning project,” 2020.
[72] A. T. Njomou, M. Fokaefs, D. F. Silatchom Kamga, and B. Adams, “On the challenges of migrating to machine learning

life cycle management platforms,” in Proceedings of the 32nd Annual International Conference on Computer Science and
Software Engineering, ser. CASCON ’22. USA: IBM Corp., 2022, p. 42–51.

[73] Z. Chen, Y. Cao, Y. Liu, H. Wang, T. Xie, and X. Liu, “A comprehensive study on challenges in deploying deep learning
based software,” in Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2020, pp. 750–762.

[74] P. Rani, S. Panichella, M. Leuenberger, A. Di Sorbo, and O. Nierstrasz, “How to identify class comment types? a
multi-language approach for class comment classification,” Journal of systems and software, vol. 181, p. 111047, 2021.

[75] P. Rani, A. Blasi, N. Stulova, S. Panichella, A. Gorla, and O. Nierstrasz, “A decade of code comment quality assessment:
A systematic literature review,” Journal of Systems and Software, vol. 195, p. 111515, 2023.

[76] C. Isbell, M. L. Littman, and P. Norvig, “Software engineering of machine learning systems,” Communications of the
ACM, vol. 66, no. 2, pp. 35–37, 2023.

[77] S. Cao, X. Sun, R. Widyasari, D. Lo, X. Wu, L. Bo, J. Zhang, B. Li, W. Liu, D. Wu et al., “A systematic literature review on
explainability for machine/deep learning-based software engineering research,” arXiv preprint arXiv:2401.14617, 2024.

[78] S. Wang, L. Huang, A. Gao, J. Ge, T. Zhang, H. Feng, I. Satyarth, M. Li, H. Zhang, and V. Ng, “Machine/deep learning
for software engineering: A systematic literature review,” IEEE Transactions on Software Engineering, vol. 49, no. 3, pp.
1188–1231, 2022.

[79] A. Chen, A. Chow, A. Davidson, A. DCunha, A. Ghodsi, S. A. Hong, A. Konwinski, C. Mewald, S. Murching, T. Nykodym
et al., “Developments in mlflow: A system to accelerate the machine learning lifecycle,” in Proceedings of the fourth
international workshop on data management for end-to-end machine learning, 2020, pp. 1–4.

[80] C. Weber and P. Reimann, “Mmp - a platform to manage machine learning models in industry 4.0 environments,” in
2020 IEEE 24th International Enterprise Distributed Object Computing Workshop (EDOCW), 2020, pp. 91–94.

[81] D. OBrien, S. Biswas, S. Imtiaz, R. Abdalkareem, E. Shihab, and H. Rajan, “23 shades of self-admitted technical debt: An
empirical study on machine learning software,” in Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, 2022, pp. 734–746.

, Vol. 1, No. 1, Article . Publication date: August 2024.

https://developer.nvidia.com/blog/a-guide-to-monitoring-machine-learning-models-in-production/
https://developer.nvidia.com/blog/a-guide-to-monitoring-machine-learning-models-in-production/
https://neptune.ai/blog/ml-model-packaging
https://neptune.ai/blog/ml-model-packaging
https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning
https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning

32 Jasmine Latendresse, Samuel Abedu, Ahmad Abdellatif, and Emad Shihab

[82] S. Sztwiertnia, M. Grübel, A. Chouchane, D. Sokolowski, K. Narasimhan, and M. Mezini, “Impact of programming
languages on machine learning bugs,” in Proceedings of the 1st ACM International Workshop on AI and Software
Testing/Analysis, 2021, pp. 9–12.

, Vol. 1, No. 1, Article . Publication date: August 2024.

	Abstract
	1 Introduction
	2 Study Design
	2.1 Dataset
	2.2 Identifying ML Model Commits and Issues
	2.3 Data Preparation for Categorization
	2.4 Survey Design

	3 Results
	4 Discussion
	4.1 The Complexity of Model Management Activities
	4.2 Implications for Practitioners
	4.3 Implications for Researchers.

	5 Related Works
	5.1 Model Management and Challenges
	5.2 Automation in ML Pipelines

	6 Threats to Validity
	7 Conclusion
	References

